


Numerical study of the homicidal chau�eur gameV.S.Patsko� and V.L.Turova���Institute of Mathematics and Mechanics, Ekaterinburg, Russia��Technical University of Munich, Munich, GermanyAbstractThe Isaacs' homicidal chau�eur di�erential game is considered. In this game a chau�eur(the pursuer P ) minimizes the capture time of a pedestrian (the evader E). The objectiveof the pedestrian is to avoid the capture or to maximize the capture time. The capture oc-curs when the distance between the players becomes less or equal than a given value (thecapture radius). The pursuer's control is the rate of turn, the evader governs choosing di-rections of his velocity. The velocity of the pursuer is greater than that one for the evaderbut his maneuverability is bounded. Numerical solutions to this problem are obtainedusing an algorithm proposed by the authors for computing level sets of the value function.Keywords: Di�erential games, time-optimal control, homicidal chau�eur gameIntroductionThe homicidal chau�eur game was formulated by R.Isaacs more than thirty years ago [1].Since that time, many authors studied this problem in various ways. The most completequalitative solution was given in the PhD dissertation of A.Merz [2]. In this work, theregion of parameters of the problem was divided into certain subregions. In each subregion,the structure of the solution was described.Very often (see [3{5]) the dynamics of the homicidal chau�eur game was used, butthe statement of the problem di�ered from the one of Isaacs. In [3], for example, asurveillance-evasion di�erential game of degree with the pursuer's detection zone in theshape of a circle was considered.Many papers on di�erential games are devoted to the development of algorithms forsolving nonlinear di�erential games in the plane [6{10]. In some of these papers (see, i.e.,[10]), the homicidal chau�eur game is used to demonstrate the e�ciency of the algorithms.In this paper, the homicidal chau�eur game is investigated using the algorithm proposedby the authors for computing level sets of the value function. Our methods are based onthe general theory of di�erential games [11, 12]. The algorithm is a natural extension of thealgorithms from [13], and exploits ideas of the algorithms [14{16] for linear time-optimaldi�erential games in the plane. Some experience [13, 14, 17, 18] in solving di�erentialgames of kind [1] in the plane helps to found out very complicated types of solutionsand to verify the solution's validity. The computation results are consistent with thoseobtained by A.Merz.It is the well-known fact due to works of R.Isaacs, J.V.Breakwell, and A.Merz thatthe solution of the homicidal chau�eur game may contain various types of singularitiesinherent to di�erential games: switching, dispersal, equivocal, universal, and focal lines.



The our algorithm's peculiarity consisting in the use of reverse time extremal trajectoriesmakes possible to recognize types of singular lines.Statement of the problemThe dynamics of the homicidal chau�eur game in reduced coordinates has the form_x1 = �w(1)R x2 ' + v1_x2 = w(1)R x1 '+ v2 � w(1); j ' j� 1; v 2 Q: (1)Here (x1; x2)0 is the state vector, w(1) and R are constants which have the sense of thepursuer's velocity and the minimal radius of turn, respectively. The objective of thecontrol ' of the �rst player is to minimize the time of attaining a given terminal set M:The objective of the control v = (v1; v2)0 of the second player is to maximize this time.So, the payo� of the game is the time of attaining the terminal set.Let � � 0: The level set (the Lebesgue set) of the value function is denoted by W (�;M):This is the set of all points in the plane such that the �rst player can guarantee thetransition of trajectories of the system (1) to the terminal set M within the time �: Inthis paper, the basic idea of the algorithm for computing sets W (�;M) is described. Theclassical formulation of the homicidal chau�eur game assumes that the sets M and Q arecircles of the radii l (capture radius) and w(2); respectively, with the centers at the origin.It is assumed that w(1) > w(2): With the algorithm proposed, the sets W (�;M) can becomputed for arbitrary sets M and Q in the plane. This enable us to obtain new typesof solutions and to study some interesting cases.The algorithmThe algorithm is based on ideas of the algorithms for linear time-optimal game problems[14{16]. The set W (�;M) is formed via a step-by-step backward procedure giving asequence of embedded setsW (�;M) � W (2�;M) � W (3�;M) � ::: � W (i�;M) � ::: � W (�;M): (2)Here � is the step of the backward procedure. Each set W (i�;M) consists of all initialpoints such that the �rst player brings system (1) into the set W ((i � 1)�;M) withinthe time duration �: We put W (0;M) = M .The crucial point of the algorithm is the computation of \fronts". The front Fi (Figure 1)is the set of all points of @W (i�;M) for which the minimum guaranteeing time of theachievement of W ((i � 1)�;M) is equal to �: For other points of @W (i�;M) theoptimal time is less than �: The line @W (i�;M) n Fi possesses the properties of thebarrier [1]. The front Fi is designed using the previous front Fi�1: For the �rst step of thebackward procedure, F0 coincides with the usable part [1] �0 of the boundary of M:Let us explain how the fronts can be constructed. Denote p(x) = (�x2; x1)0�w(1)=R; g =(0;�w(1))0: Using this notation, the equations (1) can be rewritten as follows: _x =p(x)'+v+g: Suppose the front Fi�1 is a smooth curve. Let x� be an arbitrary point of Fi�1,and ` is the normal vector to the front at x�: Let '� = arg minj'j�1 `0p(x�)'; v� = argmaxv2Q `0v:We call '�; v� the extremal controls. The controls '� and v� are chosen from the conditionsof minimizing and, respectively, maximizing the projection of the velocity vector of (1)onto the direction `: If the vector x� is collinear to `; then any control ' 2 [�1; 1] isextremal. If Q is a polygon in the plane, and ` is collinear to some normal vector to anedge [q1; q2] of Q; then any control q 2 [q1; q2] is extremal.
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Figure 1. Construction of the sets W (i�;M): +� d e
Figure 2. Local convexity and concavity.After computing the extremal controls, the extremal trajectories issued from the front'spoints in the reverse time are considered: x(�) = x� � � (p(x�)'� + v� + g): The ends ofthese trajectories at � = � are used to form the next front Fi: If the extremal control'� is not unique at some point x� 2 Fi�1, then the the segment �(x�) = f S'�2[�1;1](x� �� (p(x�)'�+ v�+ g))g is considered instead of the single point. Similarly, if the extremalcontrol v� is not unique, the segment �(x�) = f Sv�2[q1;q2](x� � � (p(x�)'� + v� + g))g isconsidered.For each front, we distinguish points of the local convexity and points of the localconcavity. In Figure 2, d is a point of the local convexity, and e is a point of the localconcavity. If x� is a point of the local convexity and the extremal control '� is not unique,we obtain a local picture like the one shown in Figure 3A after issuing the extremaltrajectories from the point x�: Here, the additional segment �(x�) is appeared on the newfront Fi: If the extremal control v� is not unique, we obtain a local picture similar to theone shown in Figure 3B: the \swallow tail " �1��2 does not belong to the new front Fiand it is taken away. For points of the local concavity, there is an inverse situation: if theextremal control '� is not unique, a swallow tail that should be removed appears; if theextremal control v� is not unique, an additional segment �(x�) appears on the new frontFi: If both '� and v� are non-unique, the insertion or the swallow tail arises dependingon which of segments �(x�) or �(x�) is greater.In the course of numerical computations, we operate with polygonal lines instead ofsmooth curves. Two normal vectors to the links [a; b]; [b; c] of the polygonal line areconsidered at each vertex b (Figure 4). The algorithm treats all possible variants ofdisposition of the vectors `[ab]; `[bc], normals to the edges ofQ; and the vector b: In Figure 4,for instance, the case is shown where the vector b is between vectors `[ab]; `[bc]; and thenormals n1; n2 to the set Q are between the vectors b and `[bc]: The extremal controls of
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Figure 3. Nonuniqueness of extremalcontrols in the case of local convexity.
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K �`[ab] `[bc]Ob 6�n1 n206 �n1 n2Qq1 q2 q3Figure 4. Example of local constructions.



the players are computed for each of these vectors, and the extremal trajectories areissued from the points a; b; c: The ends of these trajectories computed at � = � give alocal picture depicted in Figure 4. In the case considered, four extremal trajectories wereissued from the point b: Their ends are: �1; �2; �3; �4: The segment [�1; �2] appears dueto nonuniquiness of the extremal control '� for the vector b: The segments [�2; �3] and[�3; �4] arise due to nonuniquiness of the extremal control v� for the vectors n1 and n2:After removing the swallow tail ��4�3�3�2�; the polygonal line ��1�
 is obtained to be afragment of the next front.More detailed description of such local constructions is given in The main di�erencefrom the case of the linear dynamics is that the extremal control of the �rst playercan change its value not only at front's vertices but also at some interior points of front'slinks. In the game considered, such a switching may occur only once for each front's link.Since the algorithm is based on the computation of the extremal trajectories, the sin-gular lines can be obtained (see for the idea).ExamplesIn this section, the results of computing the sets W (�;M); � = i�; are discussed.In all examples presented, the following values of parameters of the problem are used:w(1) = 0:6; w(2) = 0:2; R = 2: The set Q is a 25-polygon inscribed into the circle of radiusw(2) with the center at (0; 0): The set M is a 15-polygon inscribed into the circle of radius0: The center of the circle is in (0;�0:23); (0; 0:2); (0; 0:5); (0;�0:45); (0:35;�0:3);(0:2; 0:3) for Figures 5A{F, respectively. The step � is 0:0025:In Figure 5A, the sets W (�;M); � = 10�i; are depicted. The computations are doneup to � = 0:95 when the self-intersection of the front happens. The point of the self-intersection divides the front into two parts: the interior part (adjoining to the gap) andthe exterior one (enclosing the whole consruction). For � > 0:95; the computations shouldbe carried out from the exterior and interior parts of the last front independently.In Figure 5B (5C) the sets W (�;M); � = 11�i (� = 12�i); are depicted. The self-intersection of the front happens at � = 0:7 (� = 0:6). The computations are continuedfrom the interior part of the self-intersecting front. The gap between this part of thefront and the barrier lines is completly �lled out. The computations from the exteriorpart of the self-intersecting front were not carried out. In Figure 5B, the last interiorfront corresponds to � = 1:045: In Figure 5C, the second self-intersection of the fronthappens at � = 1:045 in the process of �lling out the gap. The closed front arises. Thecomputations from this closed front are done until it shrinks into a point at � = 1:125:In Figure 5D, the sets W (�;M); � = 8�i; are shown. The self-intersecting front, whichcorresponds to � = 0:355; is drawn with the thick dash line. The computations arecontinued from both interior and exterior parts of the front. The last interior (exterior)front corresponds to the time � = 0:38 (� = 0:76). The sets W (�;M) for 0:355 < � < 0:38are doubly connected.In Figure 5E, the sets W (�;M); � = 13�i; are shown. The gap between the interiorpart of the self-intersecting front and the barrier lines is completly �lled out as it is inFigure 5B. But interior fronts have much more complicated structure.The most complicated case is presented in Figure 5F. The sets W (�;M); � = 10�i; aredepicted. The self-intersection of the interior front, which corresponds to � = 0:9 and isdrawn with the thick dash line, produces two gaps. The next front consists of three parts:an exterior part (which is not shown), and two interior parts (two loops inside the dashcontour). As the result, the sets W (�;M) for 0:9 < � < 0:95 are triple connected.For all Figures 5A{F, barriers are drawn with thick lines.
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-1 -0.5 0 0.5 1Figure 5. Examples of numerically computed sets W (i�;M):Semipermeable curves in the homicidal chauffeur gameIn [13, 14, 17, 18], algorithms for solving linear and some nonlinear di�erential games ofkind are described. These algorithms are based on the computation of the semipermeablecurves [1].In this section, the results of some analysis of the semipermeable curves in the homicidalchau�eur game will be given. Using these results, one can �nd the solvability sets of thegame of kind for any terminal set M and an arbitrary set Q: Since the set W (�;M)converges to the solvability set of the corresponding game of kind as � !1; solutions tothe game of kind can be used for the veri�cation of the computation of the sets W (�;M):Let us explain now what semipermeable curves mean. Let



H(`; x) = min' maxv `0f(x; '; v) = maxv min' `0f(x; '; v); x 2 R2; ` 2 R2;be the Hamiltonian of the game. Here f(x; '; v) = p(x)'+v+g: Fix x 2 R2 and consider` such that H(`; x) = 0: Denote '� = argmin' `0f(x; '; v); v� = argmaxv `0f(x; '; v): Itholds: `0f(x; '�; v) � 0 for any v 2 Q and `0f(x; '; v�) � 0 for any ' 2 [�1; 1]: Thismeans that the direction f(x; '�; v�) which is orthogonal to ` separates the vectograms�(v�) = S'2[�1;1] f(x; '; v�) and �('�) = Sv2Q f(x; '�; v) of the �rst and second players(Figure 6). Such a direction is called semipermeable.So, the semipermeable directions are de�ned by the roots of the equation H(`; x) = 0:We will distinguish the roots \�" to \+" and the roots \+" to \�". When de�ning theseroots, we will suppose that ` 2 E where E is a closed polygonal line around the origin.We say that `� is a root \�" to \+" if H(`�; x) = 0 and H(`; x) < 0 (H(`; x) > 0)for ` < `� (` > `�) that are su�ciently close to `�: The notation ` < `� means that thedirection of the vector ` can be obtained from the direction of the vector `� using thecounterclockwise rotation by the angle not exceeding �. The roots \�" to \+" and theroots \+" to \�" are called the roots of the �rst and second type, respectively.One can prove that, in the game considered, the equation H(`; x) = 0 has at least oneroot of the �rst type and one root of the second type. Moreover, it has two roots of the�rst type and two roots of the second type at most. We denote the roots of the �rst typeby `(1);i(x) and the roots of the second type by `(2);i(x): One can �nd the domains of thefunctions `(j);i(�); j = 1; 2; i = 1; 2: The form of these domains is shown in Figure 7.It can be proved that the function `(j);i(�) satis�es the Lipschitz condition in any closedsubset of its domain. So, we can consider the following di�erential equationdz=dx = �`(j);i(x); (3)where � is the matrix of rotation by the angle �=2 (the rotation's direction depends on j).Since the tangent at each point of phase trajectories of this equation is a semipermeabledirection, the trajectories are semipermeable curves. It means that the �rst player cankeep one side of the curve (say, positive side) and the second player can keep another side(negative side). So, the equation (3) speci�es a family �(j);i of semipermeable curves. Thefamilies �(j);i; j = 1; 2, i = 1; 2; are depicted in Figure 8.The curves of di�erent families belonging to the same type can be sewed in some casesso that the semipermeability property will be preserved. The procedure for computingthe solvability set of the game of kind is based [17, 18] on the issuing two semipermeable
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Figure 6. Semipermeable direction.
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-6 -4 -2 0 2Figure 8. Families of semipermeable curves.curves of the �rst and second type (they are faced each to other with positive sides) fromthe endpoints of M 's usable part, on the sewing semipermeable curves of two di�erentfamilies belonging to the same type, and on the analysis of mutual dispositions of com-posite curves. Here, it will be shown with some example how this methodology can beused to check the validity of the computation of W (i�;M):Let us consider the following example. The terminal set M is the regular 25-polygoninscribed into the circle of the radius (0:2 ;�0:4): The set Q is thetrianglewith vertices (�1:2; 1); (1:2; 1); (0;�6) In this example, the solvability set ofthe game of kind is the whole plane. This can be proved using the following considerationof semipermeable curves. The semipermeable curves p(2);1 2 �(2);1 and p(1);2 2 �(1);2 issuedfrom the endpoints of the usable part of M do not intersect each other before they �nishat the boundaries of the corresponding domains (Figure 9A). The conjunction of p(2);1 andp(2);2 at the point s1 is smooth. It provides the semipermeability property of p(2);1 S p(2);2 ats1: The composite curve p(2);1 S p(2);2 does not intersect p(1);2. Though the conjunction ofthe arc rs2 2 p(1);2 and and the curve p(1);1 is non-smooth, the semipermeability propertyis ful�lled at the conjunction point s2. The composite semipermeable curves of the �rstand the second types do not intersect each other. Further semipermeable curves are notbeing produced.The sets W (�;M) computed numerically are shown in Figure 9C. One can see that thecurve p(2);1 S p(2);2 is one of the two barriers. The curve p(1);2 is the other barrier. Thestructure of the fronts near p(1);1 is shown in Figure 9B. The fronts lie above the curvep(1);1 even though they come very close to it. More detailed consideration of the behaviorof fronts for su�ciently large � shows that p(1);1 is not a barrier.
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