






Chapter 14
Study of Linear Game with Two Pursuers
and One Evader: Different Strength of Pursuers

Sergey A. Ganebny, Sergey S. Kumkov, Stéphane Le Ménec,
and Valerii S. Patsko

Abstract The paper deals with a problem of pursuit-evasion with two pursuers and
one evader having linear dynamics. The pursuers try to minimize the final miss
(an ideal situation is to get exact capture), the evader counteracts them. Results of
numerical construction of level sets (Lebesgue sets) of the value function are given.
A feedback method for producing optimal control is suggested. The paper includes
also numerical simulations of optimal motions of the objects in various situations.

Keywords Game theory • Differential games • Group pursuit-evasion games
• Maximal stable bridges • Numerical schemes for differential games

14.1 Introduction

Group pursuit-evasion games (several pursuers and/or several evaders) are studied
intensively in the theory of differential games [2, 4, 6, 7, 11, 16, 17, 20].

From a general point of view, a group pursuit-evasion game (without any hi-
erarchy among players) can be often treated as an antagonistic differential game
where all pursuers are joined into one player, whose objective is to minimize some
functional, and, similarly, all evaders are joined into another player, who is the
opponent to the first one. The theory of differential games gives an existence theo-
rem for the value function of such a game. But, usually, any more concrete results
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(for example, concerning effective construction of the value function) cannot be
obtained. This is due to high dimension of the state vector of the corresponding
game and absence of convexity of time sections of level sets (Lebesgue sets) of the
value function. Just these reasons can explain why group pursuit-evasion games are
very difficult and are usually investigated by means of specific methods and under
very strict assumptions.

In this paper, we consider a pursuit-evasion game with two pursuers and one
evader. Such a model formulation arises from analysis of an applied problem where
two aircrafts (or missiles) intercept another one in the horizontal plane. The pecu-
liarity of the game explored in the paper is that solvability sets (the sets wherefrom
the interception can be guaranteed with a miss which is not greater than some given
value) and optimal feedback controls of the objects can be built numerically in the
framework of a one-to-one antagonistic game. Such an investigation is the aim of
this paper.

The paper is based on the problem formulation suggested in [12, 13]. In these
works, a case is studied when each pursuer is “stronger” than the evader. In our
paper, we research the game without this assumption.

14.2 Formulation of Problem

In Fig. 14.1, one can see a possible initial location of the pursuers and evader when
they move towards each other. Also, the evader can move from both pursuers, or
from one of them, but towards another pursuer.

Let us assume that the initial velocities are parallel and quite large, and control
accelerations affect only lateral components of object velocities. Thus, one can
suppose that instants of passages of the evader by each of the pursuers are fixed.
Below, we call them termination instants and denote by Tf 1 and Tf 2, respectively.
We consider both cases of equal and different termination instants. The players’
controls define the lateral deviations of the evader from the first and second pursuers
at the termination instants. Minimum of absolute values of these deviations is called
the resulting miss. The objective of the pursuers is minimization of the resulting
miss, the evader maximizes it. The pursuers generate their controls by a coordinated
effort (from one control center).

Fig. 14.1 Schematic initial
positions of the pursuers and
evader
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In the relative linearized system, the dynamics is the following (see [12, 13]):

ÿ1 = −aP1 + aE , ÿ2 = −aP2 + aE ,

ȧP1 = (AP1u1 − aP1)/lP1, ȧP2 = (AP2u2 − aP2)/lP2,

ȧE = (AE v− aE)/lE . (14.1)

Here, y1 and y2 are the current lateral deviations of the evader from the first and
second pursuers; aP1, aP2, aE are the lateral accelerations of the pursuers and evader;
u1, u2, v are the players’ command controls; AP1, AP2, AE are the maximal values
of the accelerations; lP1, lP2, lE are the time constants describing the inertiality of
servomechanisms.

The controls have bounded absolute values:

|u1| ≤ 1, |u2| ≤ 1, |v| ≤ 1.

The linearized dynamics of the objects in the problem under consideration is
typical (see, for example, [19]).

Consider new coordinates x1 and x2 which are the values of y1 and y2 forecasted
to the corresponding termination instants Tf 1 and Tf 2 under zero players’ controls.
One has

xi = yi + ẏiτi − aPil
2
Pih(τi/lPi)+ aEl2

E h(τi/lE), i = 1,2.

Here, xi, yi, aPi, and aE depend on t, and

τi = Tf i − t, h(α) = e−α +α − 1.

We have xi(Tf i) = yi(Tf i).
Passing to a new dynamics in “equivalent” coordinates x1 and x2 (see [12, 13]),

we obtain

ẋ1 = −AP1lP1h(τ1/lP1)u1 +AElE h(τ1/lE)v,
ẋ2 = −AP2lP2h(τ2/lP2)u2 +AElE h(τ2/lE)v. (14.2)

Join both pursuers P1 and P2 into one player which will be called the first player.
The evader E is the second player. The first player governs the controls u1 and u2;
the second one governs the control v. We introduce the following payoff functional:

ϕ
(
x1(Tf 1),x2(Tf 2)

)
= min

(∣∣x1(Tf 1)
∣
∣,
∣
∣x2(Tf 2)

∣
∣). (14.3)

It is minimized by the first player and maximized by the second one. Thus, we get
a standard antagonistic game with dynamics (14.2) and payoff functional (14.3).
This game has [1, 8–10] the value function V (t,x), where x = (x1,x2). For each
initial position (t0,x0), the value V (t0,x0) of the value function V equals the pay-
off guaranteed for the first (second) player by its optimal feedback control. Each
level set
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Fig. 14.2 Various variants of the stable bridge evolution in an individual game

Wc =
{
(t,x) : V (t,x)≤ c

}

of the value function coincides with the maximal stable bridge (see [9, 10]) built
from the target set

Mc =
{
(t,x) : t = Tf 1, |x1| ≤ c

} ∪ {
(t,x) : t = Tf 2, |x2| ≤ c

}
.

The set Wc can be treated as the solvability set for the pursuit-evasion game with the
result c.

When c = 0, we have the situation of the exact capture. The exact capture implies
equality to zero of at least one of yi at the instant Tf i, i = 1, 2.

The works [12, 13] consider only cases with the exact capture, and pursuers
“stronger” than the evader. The latter means that the parameters APi, AE , and lPi,
lE (i = 1, 2) are such that the maximal stable bridges in the individual games (P1 vs.
E and P2 vs. E) grow monotonically in the backward time.

Considering individual games of each pursuer vs. the evader, one can introduce
parameters [18] μi =APi/AE and εi = lE/lPi. They and only they define the structure
of the maximal stable bridges in the individual games. Namely, depending on values
of μi and μiεi, there are four cases of the bridge evolution (see Fig. 14.2):

• Expansion in the backward time (a strong pursuer)
• Contraction in the backward time (a weak pursuer)
• Expansion of the bridge until some backward time instant and further contraction
• Contraction of the bridge until some backward time instant and further expansion

(if the bridge still has not broken).

Respectively, given combinations of pursuers’ capabilities and individual games
durations (equal/different), there are significant number of variants for the problem
with two pursuers and one evader. Some of them are considered below.
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The main objective of this paper is to construct the sets Wc for typical cases
of the game under consideration. The difficulty of the problem is that the time
sections Wc(t) of these sets are non-convex. Constructions are made by means of
an algorithm for constructing maximal stable bridges worked out by the authors for
problems with two-dimensional state variable. The algorithm is similar to one used
in [15]. Another objective is to build optimal feedback controls of the first player
(that is, of the pursuers P1 and P2) and the second one (the evader E).

14.3 Idea of Numerical Method

As it was mentioned above, a level set Wc of the value function is the maximal
stable bridge for dynamics (14.2) built in the space t, x from the target set Mc. A time
section Wc(t) of the bridge Wc at the instant t is a set in the plane of two-dimensional
variable x.

To be definite, let Tf 1 ≥ Tf 2. Then for any t ∈ (Tf 2,Tf 1], the set Wc(t) is a vertical
strip around the axis x2. Its width along the axis x1 equals the width of the bridge in
the individual game P1 vs. E at the instant τ = Tf 1 − t of the backward time. At the
instant t = Tf 1, the half-width of Wc(Tf 1) is equal to c.

Denote by Wc(Tf 2 + 0) the right limit of the set Wc(t) as t → Tf 2 + 0. Then the
set Wc(Tf 2) is cross-like obtained by union of the vertical strip Wc(Tf 2 + 0) and a
horizontal one around the axis x1 with the width equal 2c along the axis x2.

When t ≤ Tf 2, the backward construction of the sets Wc(t) is made starting from
the set Wc(Tf 2).

The algorithm which is suggested by the authors for constructing the appro-
ximating sets W̃c(t), uses a time grid in the interval [0,Tf 1]: tN = Tf 1, tN−1, . . . ,
tS = Tf 2, tS−1, tS−2, . . . . For any instant tk from the taken grid, the set W̃c(tk) is
built on the basis of the previous set W̃c(tk+1) and a dynamics obtained from (14.2)
by fixing its value at the instant tk+1. So, dynamics (14.2) which varies in the
interval (tk, tk+1] is changed by a dynamics with simple motions [8]. The set W̃c(tk)
is regarded as a collection of all positions at the instant tk, wherefrom the first player
guarantees guiding the system to the set W̃c(tk+1) under “frozen” dynamics (14.2)
and discrimination of the second player, that is, when the second player announces
its constant control v, |v| ≤ 1, in the interval [tk, tk+1].

Due to symmetry of dynamics (14.2) and the sets Wc(Tf 1), Wc(Tf 2) with respect
to the origin, one gets that for any t ≤ Tf 1 the time section Wc(t) is symmetric also.

Up to now, different workgroups suggested many algorithms for constructing
the value function in differential games of quite generic type (see, for example,
[3,5,14,21]). The problem under consideration has linear dynamics and the second
order on the phase variable. Due to this, we use a specific method. This allows us to
make very fast computations of many variants of the game.
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14.4 Strong Pursuers, Equal Termination Instants

Add dynamics (14.2) by a “cross-like” target set

Mc = {|x1| ≤ c}∪{|x2| ≤ c}, c ≥ 0,

at the instant Tf = Tf 1 = Tf 2. Then we get a standard linear differential game
with fixed termination instant and non-convex target set. The collection {Wc} of
maximal stable bridges describes the value function of the game (14.2) with payoff
functional (14.3).

For the considered case of two stronger pursuers, choose the following
parameters:

AP1 = 2, AP2 = 3, AE = 1,
lP1 = 1/2, lP2 = 1/0.857, lE = 1,
Tf 1 = Tf 2 = 6.

1. Structure of maximal stable bridges. Figure 14.3 shows results of constructing
the set W = W0 (that is, with c = 0). In the figure, one can see several time
sections W (t) of this set. The bridge has a quite simple structure. At the initial
instant τ = 0 of the backward time (when t = 6), its section coincides with the

Fig. 14.3 Two strong pursuers, equal termination instants: time sections of the bridge W



14 Study of Linear Game with Two Pursuers and One Evader 275

target set M0 which is the union of two coordinate axes. Further, at the instants
t = 4, 2, 0, the cross thickens, and two triangles are added to it. The widths of
the vertical and horizontal parts of the cross correspond to sizes of the maximal
stable bridges in the individual games with the first and second pursuers. These
triangles are located in the II and IV quadrants (where the signs of x1 and x2 are
different, in other words, when the evader is between the pursuers) and give the
zone where the capture is possible only under collective actions of both pursuers
(trying to avoid one of the pursuer, the evader is captured by another one).

These additional triangles have a simple explanation from the point of view of
problem (14.1). Their hypotenuses have slope equal to 45◦, that is, are described
by the equation |x1|+ |x2| = const. Consider the instant τ when the hypotenuse
reaches a point (x1,x2). It corresponds to the instant when the pursuers cover
together the distance |x1(0)|+ |x2(0)| which is between them at the initial in-
stant t = 0. Therefore, at this instant, both pursuers come to the same point. Since
the evader was initially between the pursuers, it is captured at this instant.

The set W (maximal stable bridge) built in the coordinates of system (14.2)
coincides with the description of the solvability set obtained analytically in [12,
13]. The solvability set for system (14.1) is defined as follows: if in the current
position of system (14.1) at the instant t, the forecasted coordinates x1, x2 are
inside the time section W (t), then under the controls u1, u2 the motion is guided
to the target set M0; on the contrary, if the forecasted coordinates are outside the
set W (t), then there is an evader’s control v which deviates system (14.2) from
the target set. Therefore, there is no exact capture in the original system (14.1).

Time sections Wc(t) of other bridges Wc, c> 0, have the shape similar to W (t).
In Fig. 14.4, one can see the sections Wc(t) at t = 2 (τ = 4) for a collection {Wc}
corresponding to some series of values of the parameter c. For other instants t,
the structure of the sections Wc(t) is similar. The sets Wc(t) describe the value
function x →V (t,x).

2. Feedback control of the first player. Rewrite system (14.2) as

ẋ =D1(t)u1 +D2(t)u2 +E(t)v,
|u1| ≤ 1, |u2| ≤ 1, |v| ≤ 1.

Here, x = (x1,x2); vectorsD1(t),D2(t), and E(t) look like

D1(t) =
(−AP1lP1h((Tf 1 − t)/lP1), 0

)
, D2(t) =

(
0,−AP2lP2h((Tf 2 − t)/lP2)

)
,

E(t) = (
AElEh((Tf 1 − t)/lE), AElEh((Tf 2 − t)/lE)

)
.

We see that the vector D1(t) (D2(t)) is directed along the horizontal (vertical)
axis; when Tf 1 = Tf 2, the angle between the axis x1 and the vector E(t) equals
45◦; when Tf 1 �= Tf 2, the angle changes in time.

Analyzing the change of the value function V along a horizontal line in the
plane x1, x2 for a fixed instant t, one can conclude that the minimum of the
function is reached in the segment of intersection of this line and the set W (t).
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Fig. 14.4 Two strong pursuers, equal termination instants: level sets of the value function, t = 2

With that, the function is monotonic at both sides of the segment. For points at
the right (at the left) from the segment, the control u1 = 1 (u1 = −1) directs the
vectorD1(t)u1 to the minimum.

Splitting the plane into horizontal lines and extracting for each line the seg-
ment of minimum of the value function, one can gather these segments into a set
in the plane and draw a switching line through this set which separates the plane
into two parts at the instant t. At the right from this switching line, we choose the
control u1 = 1, and at the left the control is u1 = −1. On the switching line, the
control u1 can be arbitrary obeying the constraint |u1| ≤ 1. The easiest way is to
take the vertical axis x2 as the switching line.

In the same way, using the vectorD2(t), we can conclude that the horizontal
axis x1 can be taken as the switching line for the control u2.

Thus,

u∗i (t,x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if xi > 0,

−1, if xi < 0,

any ui ∈ [−1,1], if xi = 0.

(14.4)

The switching lines (the coordinate axes) at any t divide the plane x1, x2 into
4 cells. In each of these cells, the optimal control (u∗1,u

∗
2) of the first player is

constant.
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The vector control
(
u∗1(t,x),u

∗
2(t,x)

)
is applied in a discrete scheme (see [9,

10]) with some time step Δ : a chosen control is kept constant during a time
step Δ . Then, on the basis of the new position, a new control is chosen, etc.
When Δ → 0, this control guarantees to the first player a result not greater
than V (t0,x0) for any initial position (t0,x0).

3. Feedback control of the second player. Now let us describe the optimal control
of the second player. When Tf 1 = Tf 2, the vectogram

{E(t)v : v ∈ [−1,1]
}

of the
second player in system (14.2) is a segment parallel to the diagonal of I and III
quadrants. Thus, the second player can shift the system along this line only.

Using the sets Wc(t) at some instant t, let us analyze the change of the func-
tion x → V (t,x) along the lines parallel to this diagonal. Consider an arbitrary
line from this collection such that it passes through the II quadrant. One can
see that local minima are attained at points where the line crosses the axes Ox1

and Ox2, and a local maximum is in the segment where the line passes through the
rectilinear diagonal part of the boundary of some level set of the value function.
The situation is similar for lines passing through the IV quadrant.

Thus, the switching lines for the second player’s control v can be constructed
from three parts: the axes Ox1 and Ox2, and some slope line Π(t). The latter
has two half-lines passing through the middles of the diagonal parts on the level
set boundaries in the II and IV quadrants. In our case, when the position of the
system is on the switching line, the control v can take arbitrary values |v| ≤ 1.
Inside each of 6 cells, to which the plane is divided by the switching lines, the
control is taken either v=+1, or v=−1. Such a control pulls the system towards
the points of maximum. Applying this control in a discrete scheme with time
step Δ , the second player guarantees that the result will be not less than V (t0,x0)
for any initial position (t0,x0) as Δ → 0.

Note. Since W (t) �=∅, then the global minimum of the function x →V (t,x) is
attained at any x ∈W (t) and equal 0. Thus, when the position (t,x) of the system
is such that x ∈ W (t), the players can choose, generally speaking, any controls
under their constraints. If x /∈W (t), the choices should be made according to the
rules described above and based on the switching lines.

4. Optimal motions. In Fig. 14.5, one can see the results of optimal motion simula-
tions. This figure contains time sections W (t) (thin solid lines; the same sections
as in Fig. 14.3), switching lines Π(0) at the initial instant and Π(6) at the ter-
mination instant of the direct time (dotted lines), and two trajectories for two
different initial positions: ξI(t) (thick solid line) and ξII(t) (dashed line). The
motion ξI(t) starts from the point x0

1 = 40, x0
2 = −25 (marked by a black circle)

which is inside the initial section W (0) of the set W . So, the evader is captured:
the endpoint of the motion (also marked by a black circle) is at the origin. The
initial point of the motion ξII(t) has coordinates x0

1 = 25, x0
2 =−50 (marked by a

star). This position is outside the section W (0), and the evader escapes from the
exact capture: the endpoint of the motion (also marked by a star) has non-zero
coordinates.
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Fig. 14.5 Two strong pursuers, equal termination instants: result of optimal motion simulation

Fig. 14.6 Two strong pursuers, equal termination instants: trajectories in the original space

Figure 14.6 gives the trajectories of the objects in the original space. Values of
longitudinal components of the velocities are taken such that the evader moves
towards the pursuers. For all simulations here and below, we take

y0
1 =−x0

1, y0
2 =−x0

2, ẏ0
1 = ẏ0

2 = 0, a0
P1 = a0

P2 = a0
E = 0.

Solid lines correspond to the first case when the evader is successfully captured
(at the termination instant, the positions of both pursuers are the same as the po-
sition of the evader). Dashed lines show the case when the evader escapes: at the
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termination instant no one of the pursuers superposes with the evader. In this case,
one can see that the evader aims itself to the middle between the terminal positions
of the pursuers (this guarantees the maximum of the payoff functional ϕ).

14.5 Strong Pursuers, Different Termination Instants

Take the parameters as in the previous section, except the termination instants. Now
they are Tf 1 = 7 and Tf 2 = 5. Investigation results are shown in Figs. 14.7–14.9.

The maximal stable bridge W =W0 for system (14.2) with the taken target set

M0 = {t = Tf 1, x1 = 0}∪{t = Tf 2, x2 = 0}
is built in the following way. At the instant τ1 = 0 (that is, t = Tf 1), the section of the
bridge coincides with the vertical axis x1 = 0. At the instant τ1 = 2 (that is, t = Tf 2),
we add the horizontal axis x2 = 0 to the bridge expanded during passed time period.
Further, the time sections of the bridge are constructed using standard procedure
under relation τ2 = τ1 − 2.

In the same way, bridges Wc, c > 0, corresponding to the target sets

Mc = {t = Tf 1, |x1| ≤ c}∪{t = Tf 2, |x2| ≤ c}
can be built.

Fig. 14.7 Two strong pursuers, different termination instants: the bridge W and optimal motions
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Fig. 14.8 Two strong pursuers, different termination instants: level sets of the value function, t = 2

Fig. 14.9 Two strong pursuers, different termination instants: trajectories in the original space

Results of construction of the set W are given in Fig. 14.7. When τ1 > 2, time
sections W (t) grow both horizontally and vertically; two additional triangles appear,
but now they are curvilinear. Analytical description of these curvilinear parts of the
boundary is difficult. Due to this, in [12, 13], there is only an upper estimation for
the solvability set for this variant of the game.

Total structure of the sections Wc(t) at t = 2 (τ1 = 5, τ2 = 3) is shown in Fig. 14.8.
Optimal feedback controls of the pursuers and evader are constructed in the same
way as in the previous example, except that the switch line Π(t) for the evader is
formed by the corner points of the additional curvilinear triangles of the sets Wc(t),
c ≥ 0.
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In Fig. 14.7, the trajectory for the initial point x0
1 = 50, x0

2 = −25 is shown as a
solid line between two points marked by starts. The trajectories in the original space
are shown in Fig. 14.9. One can see that at the beginning the evader escapes from the
second pursuer and goes down, after that the evader’s control is changed to escape
from the first pursuer and the evader goes up.

14.6 Two Weak Pursuers, Different Termination Instants

Now we consider a variant of the game when both pursuers are weaker than the
evader. Let us take the parameters

AP1 = 0.9, AP2 = 0.8, AE = 1, lP1 = lP2 = 1/0.7, lE = 1,

and different termination instants Tf 1 = 7, Tf 2 = 5.
Since in this variant, the evader is more maneuverable than the pursuers, they

cannot guarantee the exact capture.
Fix some level of the miss, namely,

∣∣x1(Tf 1)
∣∣ ≤ 2.0,

∣∣x2(Tf 2)
∣∣ ≤ 2.0. Time sec-

tions W2.0(t) of the corresponding maximal stable bridge are shown in Fig. 14.10.
The upper-left subfigure corresponds to the instant t = 7 when the first pursuer
stops to act. The upper-right subfigure shows the picture for the instant t = 5 when
the second pursuer finishes its pursuit. At this instant, the horizontal strip is added
which is a little wider than the vertical one contracted during the passed period
of the backward time. Then, the bridges contracts both in horizontal and vertical
directions, and two additional curvilinear triangles appear (see middle-left subfig-
ure). The middle-right subfigure gives the view of the section when the vertical strip
collapses, and the lower-left subfigure shows the configuration just after the collapse
of the horizontal strip. At this instant, the section loses connectivity and disjoins
into two parts symmetrical with respect to the origin. Further, these parts continue
to contract (as it can be seen in the lower-right subfigure) and finally disappear.

Time sections
{

Wc(t)
}

and corresponding switching lines of the first player are
given in Fig. 14.11 at the instant t = 0 (τ1 = 7, τ2 = 5). The dashed line is the
switching line for the component u1; the dotted one is for the component u2. The
switching lines are obtained as a result of the analysis of the function x →V (t,x) in
horizontal (for u1) and vertical (for u2) lines. In some region around the origin, the
switching line for u1 (respectively, for u2) differs from the vertical (horizontal) axis.
If in the considered horizontal (vertical) line the minimum of the value function is
attained in a segment, then the middle of such a segment is taken as a point for the
switching line. Arrows show directions of components of the control in four cells.
Similarly, in Fig. 14.12, switching lines and optimal controls are displayed for the
second player. Here, the switching lines are drawn with thick solid lines. We have
four cells where the second player’s control is constant.

For simulations, let us take the initial position x0
1 = 12, x0

2 =−12 for system (14.2).
In Fig. 14.13, trajectories of the objects are shown in the original space. At the
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Fig. 14.10 Two weak pursuers, different termination instants: time sections of the maximal stable
bridge W2.0

beginning of the pursuit, the evader closes to the first (lower) pursuer. It is done to
increase the miss from the second (upper) pursuer at the instant Tf 2. Further closing
is not reasonable, and the evader switches its control to increase the miss from the
first pursuer at the instant Tf 1.
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Fig. 14.11 Two weak pursuers, different termination instants: switching lines and optimal controls
for the first player (the pursuers), t = 0

14.7 One Strong and One Weak Pursuers, Different
Termination Instants

Let us change the parameters of the second pursuer in the previous example and
take the following parameters of the game:

AP1 = 2, AP2 = 1, AE = 1, lP1 = 1/2, lP2 = 1/0.3, lE = 1.

Now the evader is more maneuverable than the second pursuer, and an exact capture
by this pursuer is unavailable. Assume Tf 1 = 5, Tf 2 = 7.

In Fig. 14.14, there are sections of the maximal stable bridge W5.0 (that is, for
c = 5.0) for six instants: t = 7.0, 5.0, 2.5, 1.4, 1.0, 0.0. The horizontal part of its
time section W5.0(τ) decreases with growth of τ , and breaks further. The vertical
part grows. Even after breaking the individual stable bridge of the second pursuer
(and respective collapse of the horizontal part of the cross), additional capture zones
still exist and are kept in time.
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Fig. 14.12 Two weak pursuers, different termination instants: switching lines and optimal controls
for the second player (the evader), t = 0

Fig. 14.13 Two weak pursuers, different termination instants: trajectories of the objects in the
original space

Switching lines of the first and second players for the instant t = 1 are given in
Figs. 14.15 and 14.16. These lines are obtained by processing collection

{
Wc(t = 1)

}

computed for different values of c. In comparison with the previous case of two
weak pursuers, the switching lines for the first player have simpler structure.
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Fig. 14.14 One strong and one weak pursuers, different termination instants: time sections of the
maximal stable bridge W5.0

Here, as in the previous section, the trajectories of the objects are drawn in the
original space only (see Fig. 14.17). For simulations, the initial lateral deviations are
taken as x0

1 = 20, x0
2 =−20. Longitudinal components of the velocities are such that

the evader moves towards one pursuer, but from another.
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Fig. 14.15 One strong and one weak pursuers, different termination instants: switching lines and
optimal controls for the first player (the pursuers), t = 1

14.8 Varying Advantage of Pursuers, Equal Termination
Instants

Another interesting case is when the pursuers have equal capabilities such that, at
the beginning of the backward time, the bridges in the individual games contract
and further expand. That is, at the beginning of the direct time, the pursuers have
advantage over the evader, but at the final stage the evader is stronger.

Parameters of the game are taken as follows:

AP1 = AP2 = 1.5, AE = 1, lP1 = lP2 = 1/0.3, lE = 1.

Termination instants are equal: Tf 1 = Tf 2 = 10.
In Fig. 14.18, time sections of the maximal stable bridge W1.5 built for c = 1.5

are shown for six instants: t = 10.0, 7.0, 5.7, 4.5, 1.3, 0.0. At the termination instant,
the terminal set is taken as a cross (the upper-left subfigure).
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Fig. 14.16 One strong and one weak pursuers, different termination instants: switching lines and
optimal controls for the second player (the evader), t = 1

Fig. 14.17 One strong and one weak pursuers, different termination instants: trajectories of the
objects in the original space

At the beginning of backward time, the structure of the bridges is similar to
the case of two weak pursuers: widths of both vertical and horizontal strips of the
“cross” decreases, and two straight-linear additional triangles of joint capture zone
appear (the upper-right subfigure). Then at some instant, both strips collapse, and
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Fig. 14.18 Varying advantage of the pursuers, equal termination instants: time sections of the
maximal stable bridge W1.5

only the triangles constitute the time section of the bridge (the central left subfigure).
Further, the triangles continue to contract, so they become two pentagons separated
by an empty space near the origin (the central right subfigure in Fig. 14.18). Trans-
formation to pentagons can be explained in the following way: the first player using
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Fig. 14.19 Varying advantage of the pursuers, equal termination instants: switching lines and
optimal controls for the first player (the pursuers), t = 0

its controls expands the triangles vertically and horizontally, and the second player
contracts them in diagonal direction. So, vertical and horizontal edges appear, but
the diagonal part becomes shorter. Also, in general, size of each figure decreases
slowly.

Due to action of the second player, at some instant, the diagonal disappears, and
the pentagons convert to squares (this is not shown in Fig. 14.18). After that, the
pursuers take advantage, and total contraction is changed by growth: the squares
start to enlarge. When some time passes, due to the growth, the squares touch each
other at the origin (the lower-left subfigure in Fig. 14.18). Since the enlargement
continues, their sizes grow, and the squares start to overlap forming one “eight-like”
shape (the lower-right subfigure in Fig. 14.18).

Figures 14.19 and 14.20 show time sections of a collection of maximal stable
bridges and switching lines for the first and second players, respectively, for the
instant t = 0.

As above, the simulated trajectories are shown in the original space only. For
simulation, the following initial conditions are taken: x0

1 = 5, x0
2 = −20. Longitudi-

nal components of the velocities are such that the evader moves from both pursuers.
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Fig. 14.20 Varying advantage of the pursuers, equal termination instants: switching lines and
optimal controls for the second player (the evader), t = 0

Fig. 14.21 Varying advantage of the pursuers, equal termination instants: trajectories of the
objects in the original space

The computed trajectories are given in Fig. 14.21. As it was said earlier, since at
the final stage of interception the pursuers are weaker than the evader, they cannot
guarantee the exact capture but only some non-zero level of the miss.
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14.9 Conclusion

Presence of two pursuers acting together and minimizing the miss from the evader
leads to non-convexity of time sections of the value function when the situation
is considered as a standard antagonistic differential game where both pursuers are
joined into one player. In the paper, results of numerical study of this problem are
given for several variants of the parameters. The structure of the solution depends
on the presence or absence of dynamic advantage of one or both pursuers over
the evader. Optimal feedback control methods of the pursuers and evader are built
by preliminary construction and processing the level (Lebesgue) sets of the value
function (maximal stable bridges) for some quite fine grid of values of the payoff.
Switching lines obtained for each scalar component of controls depend on time,
and only they, not the level sets, are used for generating controls. Optimal controls
are produced at any current instant depending on the location of the state point
respectively to the switching lines at this instant. Accurate proof of the suggested
optimal control method needs for some additional study.
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