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The paper suggests an algorithm for an exact construction of solv-
ability set in a differential game with simple motion in the plane, with
a fixed terminal time and a polygonal (in the general case, non-convex)
terminal set. Some examples of solvability sets are computed.

Introduction

A system with simple motion introduced by R. Isaacs in differential games is a simplest
controlled system with geometric constraints of players’ controls, which do not depend
on time. The phase velocity for the system at a current instant of time is determined
only by controls of the players selected at that instant. Researches of many meaningful
game problems in the literature on differential games are based on the assumption that
dynamics of simple motion is used. In addition, the dynamics of simple motion is often
used in computational methods as an approximation. The standard problem in the theory
of differential games with zero sum is a problem with a fixed terminal time and a given
terminal set, to which the first player tries to bring the system at a terminal instant,
and the second one prevents it. In the framework of this problem, it is important to
develop an algorithm for constructing the maximal set (solvability set) of initial phase
points, from which such a transfer is guaranteed for the first player. In the case of convex
terminal set, the solution of this problem is known. In this paper, for problems with
simple motion in the plane, an algorithm for an exact construction of solvability set for
a polygonal terminal set (convex or non-convex) is described.

I. Problem statement

We consider the following differential game with fixed terminal time. A dynamical
system in R2 is described by differential equation with simple motion [1]

ẋ = u+ v, u ∈ P, v ∈ Q, t ∈ [0, ϑ], ϑ > 0, (1)

where u and v are controls of the first and second players, each of the sets P and Q
is either a convex simple polygon or a linear segment. Let M ⊂ R2 be either a simple
polygon, or the closure of complement of a simple polygon. The last means the set
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M ′ = R2 \M is a simple polygon. Here, the overline denotes the closure of a set. The
set M is considered as a terminal set by the first player at the instant ϑ. The second
player aims to prevent the system from reaching M at the instant ϑ.

Such dynamics and terminal set are usually the result of simplifying dynamics in a
more complex control problem with uncertainty and conflict, applied to a small period
of time.

The problem is to construct the solvability set Gϑ(M) ⊂ R2 of the first player, i.e.
the set of all initial points x(0) = x0 ∈ R2 for the system (1), from which the first
player guarantees attainability of the terminal set M at the instant ϑ. Each player
chooses his control from the corresponding set of constraints (P or Q) basing on a current
position (t, x(t)) of the system. Definitions of the players’ strategies and trajectories of
the dynamic system under the strategies can be introduced in various ways [2–4], but
lead to equivalent notions of solvability set.

II. Basic definitions

Let us introduce some definitions related to polygons and its representations.

A. Polygonal chain

Let a = [a1, a2, . . . , an] denote a finite cyclic sequence of points in the plane, that is each
element ai ∈ a has the next element ai+1 and the previous element ai−1, where a0 = an,
an+1 = a1, n ∈ N.

A closed polygonal chain is a non-empty finite sequence of line segments (edges) −−→a1a2,
−−→a2a3, . . . ,

−−−−→anan+1, which join adjacent points in a finite cyclic sequence [a1, a2, . . . , an]
of points (vertices) in the plane, and consecutive vertices are distinct, i.e. ai 6= ai+1,
i = 1, . . . , n. Each edge −−−→aiai+1 of a polygonal chain is directed from ai to ai+1. We
assume also that there are no collinear consecutive edges. Let us denote by C the set of
all closed polygonal chains.

We will use the notation a = [a1, a2, . . . , an] also for a closed polygonal chain that
means the inclusion a ∈ C makes sense.

We define a chain â based on a finite cyclic sequence a of points as follows. First
we remove from a all vertices that repeat the previous one. Then we delete all vertices
adjacent to collinear edges. The resulting sequence â is either a singleton (that is, it
determines a point in the plane) or â ∈ C.

B. Simple polygon

A simple polygon means a region enclosed by a single closed polygonal chain that does
not intersect itself. For brevity, we call a closed polygonal chain without self-intersections
a simple polygonal chain. Let C0 denote the set of all simple (closed) polygonal chains.

Any simple polygon A ⊂ R2 is defined by a cyclic counterclockwise sequence of its
vertices a1, a2, . . . , an, that is the interior of A lies to the left of −−−→aiai+1 as we move
from ai to ai+1. The polygonal chain formed by the vertices of A in reverse (clockwise)
order describes the set A′ = R2 \ A. We will use the notations A ∼ [a1, a2, . . . , an] and
A′ ∼ [an, an−1, . . . , a1].
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C. Base list of half-planes

We associate with a polygonal chain a = [a1, a2, . . . , an] ∈ C a cyclic list [a]∗ of half-planes
as follows. The edge −−−→aiai+1 describes a half-plane Πi that lies to the left of the straight
line passing through the points ai and ai+1 (i = 1, . . . , n). This view gives us a cyclic list

[a]∗ := [Π1,Π2, . . . ,Πn].

The list [a]∗ is called base list of half-planes for a ∈ C.
Any pair of adjacent half-planes in the list [a]∗ has a unique point of intersection of

their boundaries. Therefore the polygonal chain a ∈ C is uniquely restored from the list
[a]∗, namely ai = ∂Πi−1 ∩ ∂Πi, i = 1, . . . , n, Π0 = Πn. Here, the symbol ∂ denotes the
boundary of a set.

D. Regular list and consistent list of half-planes

Suppose now that a cyclic list L = [Π1,Π2, . . . ,Πn], n ≥ 2, of half-planes is initially given,
where the boundaries of adjacent half-planes have a unique intersection point. Such a
list will be called regular. Further we will consider only regular lists of half-planes.

A regular list L corresponds uniquely to a cyclic sequence [L]∗ = [a1, a2, . . . , an] of
points ai = ∂Πi−1∩∂Πi, i = 1, . . . , n, Π0 = Πn. We note that the cyclic sequence a = [L]∗

is a closed polygonal chain (that is, a ∈ C) under the condition ai 6= ai+1, i = 1, . . . , n,
an+1 = a1, since the absence of collinear adjacent edges follows from the regularity of the
list L.

Let us point out the conditions for the list L that ensure [L]∗ ∈ C and [[L]∗]∗ = L.
To do this, we classify the types of pairs and triples of half-planes that can appear in the
list L.

An ordered pair of different half-planes (Π1,Π2) is called convex (concave ) if Π1 ∩Π2

is an angle in the plane and this angle lies on the left-hand side (right-hand side) when we
first move along the straight line ∂Π1 up to the intersection with ∂Π2 and then along the
straight line ∂Π2. In all other cases, the straight lines ∂Π1 and ∂Π2 are parallel, which
we denote as Π1 ‖ Π2. We will also distinguish a collinear pair of half-planes.

Let us note that adjacent edges −−→a1a2 and −−→a2a3 of a polygonal chain form a convex
(concave) pair of half-planes if and only if the direction −−→a2a3 is a turn to the left (to the
right) with respect to the direction −−→a1a2.

An ordered triple (Πa,Π,Πb) of different half-planes is called convex (concave ) if the
pairs (Πa,Π) and (Π,Πb) are convex (concave). An ordered triple (Πa,Π,Πb) of different
half-planes is called a zigzag triple if the pair (Πa,Π) is convex and (Π,Πb) is concave or
vise versa.

We start with definition of consistent convex, concave and zigzag triples.
A convex triple σ = (Πa,Π,Πb) is said to be consistent, if Πa ∦ Π, Π ∦ Πb, and the

set Πa ∩ Πb ∩ ∂Π is a non-degenerate linear segment (Fig. 1a).
Observe that consistent convex triple σ = (Πa,Π,Πb) defines points a = ∂Πa ∩ ∂Π

and b = ∂Πb ∩ ∂Π, a 6= b, and when moving from a to b, the half-plane Π lies on the left.
We denote by Π′ the closure of the complement of a half-plane Π in R2, i.e. Π′ =

R2 \Π. Let us remark that if a triple σ = (Πa,Π,Πb) is convex, then the triple σ′ =
(Π′

b,Π
′,Π′

a) is concave, and vice versa.
A concave triple σ = (Πa,Π,Πb) is said to be consistent, if the triple σ′ = (Π′

b,Π
′,Π′

a)
is consistent (Fig. 1b).
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Fig. 1. Consistent convex (a), concave (b), and zigzag (c) triple (Πa,Π,Πb) of half-planes

A zigzag triple σ = (Πa,Π,Πb) is called consistent, if in the case of convexity of the
pair (Πa,Π), the convex triple (Πa,Π,Π

′
b) is consistent, and in the case of concavity of

the pair (Πa,Π), the convex triple (Πb,Π
′,Π′

a) is consistent (Fig. 1c).
A cyclic list of half-planes is called consistent if any successive triple of its elements

is consistent. For a consistent list L, we have [L]∗ ∈ C and [[L]∗]∗ = L.

III. Solvability sets for convex and concave cases

A. Representation formula for a convex case

The formula
Gϑ(M) =

(
M − ϑP

)
∗− ϑQ (2)

for the solvability set Gϑ(M) is well-known [5] in the case of a closed convex termi-
nal set M . Here, a multiplication by a scalar, the algebraic (Minkowski) sum and the
geometric (Minkowski) difference are used:

λA = {λa : a ∈ A}, λ ∈ R; A+B = {a+ b : a ∈ A, b ∈ B};

A ∗− B = {d : d+B ⊂ A} =
⋂

b∈B

(A− b).

If M is a convex polygon, then the set Gϑ(M) is also a convex polygon under the condi-
tions on P and Q specified after (1).

Relying on the right-hand side of the formula (2), we define the operator Tτ acting on
a set A ⊂ R2:

Tτ (A) :=
(
A− τP

)
∗− τQ.

We denote by Πη[A] the support half-plane to a set A ⊂ R2 with the outer normal η:

Πη[A] = {x ∈ R2 : 〈x, η〉 ≤ ρ(η;A) < +∞}, ρ(η;A) := sup{〈a, η〉 : a ∈ A}.

In the case of a convex polygon M , it can be shown (see, for example, [6]) that the
set Gϑ(M) is representable as an intersection of a finite number of supporting half-planes
to M shifted by the operator Tϑ:

Gϑ(M) = Tϑ(M) =
⋂{

Tϑ(Πη[M ]) : η ∈ N (M) ∪ N (−P )
}
. (3)

Here, N (M) and N (−P ) are finite sets of unit outer normals to the edges of the polygons
M and −P respectively. If P is a linear segment, then N (−P ) = N (P ) = {ν,−ν}, where
ν is a unit normal to P .
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Using the definition of the operator Tτ , we calculate the extremal shift of a half-plane
Πη with the outer normal η for a given value τ > 0 by the formula

Tτ (Πη) = Πη − τ
(
u0(η) + v0(η)

)
,

where
u0(η) ∈ Arg min

u∈P
〈u, η〉, v0(η) ∈ Arg max

v∈Q
〈v, η〉.

Hence, for the convex case, the construction of the solvability set Gϑ(M) can be
reduced to creating an ordered cyclic list of half-planes Πη, based on the outer normals
of the sets M and −P , and to removing those half-planes that are not essential for
intersection (3) from the list. One of the algorithms for a convex case is described in [7,8].

B. Base and expanded lists for a convex case

Let M be a convex polygon, M ∼ m = [m1, . . . , mn1
] and LM = [m]∗. The list LM is

consistent.
We note that the list LM is formed by the half-planes Πη[M ], η ∈ N (M), cyclically

ordered in such a way that the outer normal η of the half-planes turns counterclockwise
when going around the list. In the base list LM of a convex polygon M , any triple of
adjacent half-planes is convex. A list with this property will be called convex.

We have the representation

M =
⋂{

Πη[M ] : η ∈ N (M)
}
=

⋂{
Π : Π ∈ LM

}
.

To apply formula (3), we expand the base list LM with additional half-planes Πη[M ],
η ∈ N (−P ), to the list LP

M . To this end, we insert additional half-planes between the
half-planes of the base list in such a way that the outer normal of the half-planes, while
traversing the expanded list, is still rotated counterclockwise. The expanded list LP

M is
also convex. If LP

M 6= LM , then LP
M is not consistent.

For τ ∈ [0, ϑ], we write formula (3) as

Gτ (M) =
⋂{

Tτ (Π) : Π ∈ LP
M

}
. (4)

We denote by L the list obtained by removing such half-planes from the list LP
M that can

be dropped in intersection (4) for τ = ϑ without changing the result of the intersection.
Then [L]∗ ∼ Gϑ(M).

C. Representation formula for a concave case

Suppose that the terminal setM is the complement to some convex polygonM ′ = R2 \M .
To describe the solvability set, one can apply the formula for the convex case by swapping
the players and swapping the terminal set and its complement. Let us write this formula
in the original notation.

In a concave case, the formula for the complement G′
ϑ(M) = R2 \Gϑ(M) of the

solvability set Gϑ(M) is

G′

ϑ(M) =
(
M ′ − ϑQ

)
∗− ϑP =: T ∗

ϑ(M
′).

The representation for G′
ϑ(M), analogous to (3), has the form

G′

ϑ(M) = T ∗

ϑ(M
′) =

⋂{
T ∗

ϑ(Πη[M
′]) : η ∈ N (M ′) ∪ N (−Q)

}
. (5)
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We note that the equality
T ∗

ϑ(Π
′) = R2 \ Tϑ(Π) (6)

holds for a half-plane Π and its complement Π′ = R2 \ Π.
We define the set of outer normals to the set M :

N (M) := {−η : η ∈ N (M ′)}.

In addition, for a unit vector η, we define the “support” half-plane

Πη[A] := R2 \ Π−η[A′]. (7)

to the set A ⊂ R2 with convex complement A′ = R2 \ A.
By virtue of (6) and (7), we have

T ∗

ϑ(Πη[M
′]) = T ∗

ϑ (R
2 \ Π−η[M ]) = R2 \ Tϑ(Π−η[M ]).

Representation (5) implies

Gϑ(M) =
⋃{

Tϑ(Π−η[M ]) : η ∈ N (M ′) ∪ N (−Q)
}
.

Since −N (M ′) = N (M) and −N (−Q) = N (Q), we find

Gϑ(M) =
⋃{

Tϑ(Πη[M ]) : η ∈ N (M) ∪N (Q)
}
. (8)

D. Base and expanded lists for a concave case

LetM be a set with the convex complement M ′, M ∼ m = [m1, . . . , mn1
] and LM = [m]∗.

The list LM is consistent.
We note that the list LM is formed by the half-planes Πη[M ], −η ∈ N (M ′), cyclically

ordered in such a way that the outer normal η of the half-planes turns around clockwise.
In the base list LM for the concave case, any triple of adjacent half-planes is concave. A
list with this property will be called concave.

We have the representation

M =
⋃{

Πη[M ] : η ∈ N (M)
}
=

⋃{
Π : Π ∈ LM

}
.

To apply formula (8), we expand the base list LM with additional half-planes Πη[M ],

η ∈ N (Q), to the list LQ
M . To this end, we insert additional half-planes between the

half-planes of the base list in such a way that the outer normal of the half-planes, while
traversing the expanded list, is still rotated clockwise. The expanded list LQ

M is also
concave. If LQ

M 6= LM , then LQ
M is not consistent.

For τ ∈ [0, ϑ], we write formula (8) as

Gτ (M) =
⋃

{Tτ (Π) : Π ∈ LQ
M}. (9)

We denote by L the list obtained by removing such half-planes from the list LQ
M that

can be dropped in union (9) for τ = ϑ without changing the result of the union. Then
[L]∗ ∼ Gϑ(M).
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IV. Expansion of an ordered list of half-planes

We generalize the operation of expanding the list LM to LP
M in the convex case and to

LQ
M in the concave case. To do this, we relate each additional half-plane with the convex

or concave pair of adjacent half-planes where it should be inserted.
Let an arbitrary regular list

L = [Π1,Π2, . . . ,Πn]

of half-planes be given. The boundaries of adjacent half-planes of L have a unique
intersection point. Any pair (Πa,Πb) of adjacent half-planes of L is either convex or
concave. Let ηa and ηb be unit outer normals to the half-planes Πa and Πb respectively.

Assume the pair (Πa,Πb) is convex. We denote by I0(Πa,Πb) the supporting half-
planes to the angle Πa ∩ Πb with outer normals from N (−P ) that lie in the interior of
the cone which is spanned by ηa and ηb:

I0(Πa,Πb) = {Πη[Πa ∩Πb] : 〈η, ηa〉 > 0, 〈η, ηb〉 > 0, η ∈ N (−P )}. (10)

If the set I0(Πa,Πb) is neither empty nor a singleton, we arrange it to be convex, i.e. any
two adjacent half-planes form a convex pair.

Assume the pair (Πa,Πb) is concave. In this case, the definition analogous to (10) is

I0(Πa,Πb) = {Πη[Πa ∪ Πb] : 〈η, ηa〉 > 0, 〈η, ηb〉 > 0, η ∈ N (Q)}. (11)

If the set I0(Πa,Πb) is neither empty nor a singleton, we arrange it to be concave, i.e.
any two adjacent half-planes form a concave pair.

Let us denote by LPQ the list obtained from a list L by inserting the ordered set
I0(Πa,Πb) of additional half-planes into each adjacent pair (Πa,Πb) in the list L.

Further in the paper we use the notation (Π1,Π2, . . . ,Πm) ⊂ L for a sequence of m
adjacent half-planes of the list L.

V. Weight of an ordered list of half-planes

In convex and concave cases, we suggest removing the half-planes from the list in the
order that naturally arises when considering the set Gτ (M) defined by (4) or (9) with
the parameter τ increasing from 0 to ϑ. Such an approach will allow us to generalize the
algorithm.

To determine the order of removal of half-planes, a numerical characteristic (weight)
is assigned to each half-plane in a regular list L as follows.

We consider Π ∈ L and σ = (Πa,Π,Πb) ⊂ L. Let us define

∆(σ) := {τ∗ > 0 : Tτ (σ) ∈ Σ, τ ∈ (0, τ∗)}, (12)

where Tτ (σ) := (Tτ (Πa), Tτ (Π), Tτ (Πb)), σ = (Πa,Π,Πb), τ ≥ 0, and Σ denote the class
of all consistent triples of half-planes.

The value

ΩL

0 (Π) :=

{
0 if ∆(σ) = ∅,

sup∆(σ) if ∆(σ) 6= ∅.

is called weight of a half-plane Π ∈ σ ⊂ L in the list L. We have ΩL

0 (Π) ∈ [0,+∞].
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The value
Ω0(L) = min{ΩL

0 (Π) : Π ∈ σ ⊂ L}

is called weight of the list L.
In the algorithm, the weight will be computed for a list of half-planes obtained by

shifting some regular list L = [Π1,Π2, . . . ,Πn] by the operator TΘ, Θ ≥ 0, that is for the
list

TΘ(L) := [TΘ(Π1), TΘ(Π2), . . . , TΘ(Πn)].

For brevity, we introduce the notions of weight ΩL

Θ(Π) of the half-plane Π ∈ σ ⊂ L and
weight ΩΘ(L) of the list L with respect to the instant Θ ≥ 0:

ΩL

Θ(Π) := Θ + ΩL

0 (TΘ(Π)), ΩΘ(L) := Θ + Ω0(TΘ(L)).

From the definitions of consistent list and weight of the list, we get the following
properties.

Proposition 1. 1) If a list L is consistent, then there exists such ε > 0 that the list

Tτ (L) is consistent for all τ ∈ [0, ε).
2) If Θ ≥ 0 and w = ΩΘ(L) > 0 for a list L, then the list TΘ+τ (L) is consistent for

all τ ∈ (0, w).
3) If Θ ≥ 0 and w = ΩΘ(L) < +∞ for a list L, then the list TΘ+w(L) is not consistent.

VI. Algorithm for a convex/concave case

We describe the algorithm for a convex polygon M .

1. Consider the list L = LP
M , set Θ = 0 and calculate the weight w∗ = Ω0(L

P
M), i.e.

the value w∗ is equal to the minimal weight of the half-planes in the list LP
M .

2. Assume w∗ ≥ ϑ. We set a = [Tϑ(L)]
∗. Then one of the following three cases is

possible.

(a) â = [a1]. Then Gϑ(M) is the point a1.

(b) â = [a1, a2]. Then Gϑ(M) is a linear segment with the ends a1 and a2.

(c) â = [a1, a2, . . . , an], n > 2. Then Gϑ(M) ∼ â, Gϑ(M) is a convex polygon.

3. Assume now that w∗ < ϑ. Find a maximal sequence I∗ ⊂ L of adjacent half-planes
with the weight w∗ and the half-planes Πf

a and Πf
b adjacent to I∗, i.e.

I∗ = (Π1, . . . ,Πn) ⊂ L, (Πf
a,Π1) ⊂ L, (Πn,Π

f
b ) ⊂ L,

ΩL

Θ(Π
f
a) > w∗ if Πf

a 6= Πn, and ΩL

Θ(Π
f
b ) > w∗ if Πf

b 6= Π1.

One of the following three cases is possible.

(a) I∗ = L. Then Gw∗
(M) is a point and Gϑ(M) = ∅.

(b) Πf
a ‖ Πf

b . Then Gw∗
(M) is a linear segment and Gϑ(M) = ∅.

(c) Πf
a ∦ Πf

b . Then we remove the sequence I∗ ⊂ L from the list L and get the list
L∗. Set L = L∗ and calculate the weight w∗ = ΩΘ(L∗) ∈ [Θ,+∞]. Redefine
Θ = w∗ if w∗ > Θ. Go back to step 2.
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The algorithm is finite since the initial list LP
M is finite and at least one half-plane is

removed from the list at each step.
In the case of convexity of the set M ′ = R2 \M , we initialize L = LQ

M in the first step
of the algorithm, and the algorithm remains the same with replacing the interpretation
of the results of each step. Namely, in cases 2a, 2b, 3a and 3b, we obtain Gϑ(M) = R2,
in the case 2c we have Gϑ(M) ∼ â, and Gϑ(M) is the complement to a convex polygon.

A detailed pseudo-code of the algorithm for a convex/concave case is given below.

Algorithm 1

Input:
Set M ∼ m = [m1, m2, . . . , mn1

], n1 ≥ 3: M or M ′ is a convex polygon
Convex polygon or linear segment P ∼ [u1, u2, . . . , un2

], n2 ≥ 2
Convex polygon or linear segment Q ∼ [v1, v2, . . . , vn3

], n3 ≥ 2
Fixed terminal time ϑ > 0

Output: â = ∅ or a finite sequence â of points that defines a point, a linear segment
or a simple polygonal chain

1: Define the base list LM = [m]∗ of half-planes
2: Expand the list LM to the list LPQ

M by inserting additional half-planes I0(Πi,Πi+1)
between any neighbours Πi and Πi+1 in the list LM

3: Initialize the current list L = LPQ
M and the current backward time Θ = 0

4: Calculate the weight w∗ = Ω0(L)
5: while w∗ < ϑ do
6: Determine a maximal sequence I∗ ⊂ L of half-planes with the weight w∗

7: if I∗ = L then
8: return â = ∅
9: end if
10: Determine the half-plane Πf

a preceding I∗
11: Determine the half-plane Πf

b following I∗
12: if Πf

a and Πf
b are not parallel then

13: Remove I∗ from L
14: Recount ΩL

Θ(Π
f
a) and ΩL

Θ(Π
f
b )

15: else ⊲ Πf
a and Πf

b are parallel
16: return â = ∅
17: end if
18: Recalculate the weight w∗ = ΩΘ(L)
19: if w∗ > Θ then
20: Set Θ = w∗

21: end if
22: end while
23: Calculate a = [L]∗ and â
24: return â
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VII. Underlying theory for a general case

A. Basic theorems

Consider a closed set W ⊂ R3 = {(t, x)}. We introduce the notation

W (t) = {x ∈ R2 : (t, x) ∈ W}, t ∈ R.

Let t1 < t2. We say that W belongs to the class S[t1, t2] if for any t∗ ∈ [t1, t2) the following
properties hold:

(S1) for any x∗ ∈ W (t∗) and v ∈ Q, there exists a solution x(·) to the differential
inclusion ẋ ∈ P + v such that x(t∗) = x∗ and x(t) ∈ W (t), t ∈ [t∗, t2];

(S2) for any x∗ ∈ R2 \W (t∗) and u ∈ P , there exists a solution x(·) to the differential
inclusion ẋ ∈ u+Q such that x(t∗) = x∗ and x(t) ∈ R2 \W (t), t ∈ [t∗, t2].

The definition of the class S[t1, t2] includes property (S1) of u-stability of the set W
and property (S2) of v-stability of the set R3 \W [9, §13.1] on the interval [t1, t2].

The following two lemmas describe basic examples of sets from the class S[t1, t2] and
are immediate consequences of (2) and properties of u- and v-stable sets.

Lemma 1. Let Π be a half-plane in R2. Then

Kt2(Π) := {(t, x) : t ≤ t2, x ∈ Tt2−t(Π)} ∈ S[t1, t2].

Lemma 2. Let (Πa,Πb) be a convex or concave pair of half-planes in R2. We define

A := {Πa} ∪ {Πb} ∪ I0(Πa,Πb),

where the set I0(Πa,Πb) of half-planes is given by (10) for a convex pair and by (11) for
a concave pair,

Ψt2(t) :=





⋂
Π∈A

Tt2−t(Π), if (Πa,Πb) is convex,
⋃

Π∈A
Tt2−t(Π), if (Πa,Πb) is concave.

Then

Kt2(Πa,Πb) := {(t, x) : t ≤ t2, x ∈ Ψt2(t)} ∈ S[t1, t2]. (13)

The set Kt2(Π) is an intersection of a half-space in R3 with the half-space t ≤ t2.
The set Kt2(Πa,Πb) is a part of an intersection or union of half-spaces included in the
half-space t ≤ t2.

A cyclic list L of half-planes is called complete if ∆(σ) = ∅ for any triple σ =
(Πa,Π,Πb), where (Πa,Πb) ⊂ L and Π ∈ I0(Πa,Πb). Here, ∆(σ) is defined by (12).

Let us give a definition of a class S0[t1, t2]. A set W ⊂ R3 belongs to the class S0[t1, t2]
if W (t2) is a simple polygon and there exists a complete cyclic list L of half-planes such
that for all τ ∈ (0, t2 − t1) the list Tτ (L) is consistent and

W (t2 − τ) ∼ [Tτ (L)]
∗ ∈ C0. (14)

An intersection of a set W ∈ S0[t1, t2] with the layer t1 ≤ t ≤ t2 is a polyhedron
stretched along the time axis t, whose lateral faces are trapezoids or triangles adjacent
along lateral edges.

Let us formulate three basic theorems, which allow us to develop a general algorithm
for construction of a solvability set.
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Theorem 1.
S0[t1, t2] ⊂ S[t1, t2]. (15)

The idea of the proof of Theorem 1 is as follows. At first, on the basis of Lemma 2,
we prove the inclusion W ∈ S[t′1, t2] for any t′1 ∈ (t1, t2). From this, we can obtain the
inclusion W ∈ S[t1, t2] since the sets W , P and Q are closed.

Theorem 2. Let us suppose W ∈ S0[t1, t2]. Then Gt2−t1(W (t2)) = W (t1).

The proof of Theorem 2 reduces to verification of maximality of the set W as a set
having the u-stability property and the section W (t2).

We denote by intA the set of all interior points of the set A.

Theorem 3. Let us suppose t1 < t∗ < t2, W1 ∈ S0[t1, t∗], W2 ∈ S0[t∗, t2], and

W1(t∗) = intW2(t∗). Then Gt2−t1(W2(t2)) = W1(t1).

This theorem gives conditions of gluing together sets from the classes S0[t1, t∗] and
S0[t∗, t2] on two adjacent intervals [t1, t∗] and [t∗, t2], which define the corresponding
solvability set on the union of the intervals. The proof of Theorem 3 reduces to checking
the possibility for the second player to evade the set W2(t∗) \ intW2(t∗) under any choice
of control u ∈ P by the first player on the interval [t∗− ε, t∗] for any fixed ε ∈ (0, t∗− t1).

B. Idea of constructions for a general case

The algorithm for a convex/concave case forms a finite sequence

0 = Θ0 < Θ1 < · · · < Θm < Θm+1 = ϑ

of those backward time instants when we remove half-planes from the current list L. We
denote by Lk the list of half-planes obtained from the initial list LPQ

M after removing the
corresponding half-planes at the instants Θ0, . . . , Θk of backward time, k ∈ 0, m.

Let us note that, for the convex/concave case, the set

W := {(t, x) : t ∈ [0, ϑ], x ∈ Gϑ−t(M)}

belongs to the class S0[ϑ − Θk+1, ϑ − Θk] for any k = 0, . . . , m, and W (t) = intW (t),
t ∈ [0, ϑ]. Observe that Θk+1 − Θk = Ω0(TΘk

(Lk)). The transition from the list Lk to
the list Lk+1 means removing half-planes with the weight equal to Θk+1 = ΩΘk

(Lk) from
the list Lk. Such a transformation of the list restores the consistency of the current list,
while maintaining the equality

⋂
{TΘk+1

(Π) : Π ∈ Lk} =
⋂

{TΘk+1
(Π) : Π ∈ Lk+1}

for the convex case and the equality

⋃
{TΘk+1

(Π) : Π ∈ Lk} =
⋃

{TΘk+1
(Π) : Π ∈ Lk+1}

for the concave case. In this case, the half-planes are removed only from the convex or
concave triples of the half-planes, that preserves the completeness of the list TΘk+1

(Lk+1).
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In a general case, when either M or M ′ is a simple polygon, Algorithm 1 can always
form the complete list L0 based on the initial list LPQ

M , such that Ω0(L0) > 0. Set
Θ1 := min{ϑ,Ω0(L0)}. We have Ω0(TΘ1

(L0)) = 0.
Assume Θ1 = ϑ and [Tτ (L0)]

∗ ∈ C0 for all τ ∈ (0, ϑ). Then the solvability set Gϑ(M)
is determined on the basis of the list L0 by restoring the cyclic sequence a = [Tϑ(L0)]

∗

of points, which is transformed into a closed polygonal chain â. By construction, the
polygonal chain â encloses some set A. Given Theorem 2, we obtain Gϑ(M) = A if M is
a polygon, and Gϑ(M) = R2 \ A if M ′ is a polygon.

Assume now Θ1 < ϑ and [Tτ (L0)]
∗ ∈ C0 for all τ ∈ (0,Θ1). Then, to continue the con-

struction, we need to convert the list L0 to a complete list L1 such that Ω0(TΘ1
(L1)) > 0.

Removing half-planes with the weight Θ1 = Ω0(L0) from the list L0 implies their possible
removal from zigzag triples, which can lead to violation of completeness of the current list.
Therefore, after removing the half-planes, we have to insert some other half-planes into
the list to provide completeness. In addition, according to Theorem 3, the lists L0 and
L1 have to correspond to sets A0 and A1 connected by the equality intA0 = A1, which
means removing all or part of those half-planes from the list L0 that form overlapped
edges of the polygonal chain b̂, where b = [TΘ1

(L0)]
∗.

By analogy with forming the list L1 on the base of L0 at the instant Θ1, one can
continue the procedure of constructing the list Lk on the base of Lk−1 at the next step
(Θk−1,Θk) of backward time under the conditions Θk < ϑ and [Tτ (Lk−1)]

∗ ∈ C0, τ ∈
(Θk−1,Θk), k = 2, 3, . . . .

The condition [Tτ (Lk−1)]
∗ ∈ C0, τ ∈ (Θk−1,Θk), means that there are no self-

intersections of the polygonal chain [Tτ (Lk−1)]
∗, and its verification is an independent

difficult problem. If we abandon the verification, then Algorithm 1 can be generalized by
complicating the transition from the list Lk to the list Lk+1.

Suppose that the generalized algorithm have constructed a list Lm at the last step.
Then, based on this list, one can form the polygonal chain â, where a = [Tϑ(Lm)]

∗. The
polygonal chain â determines the solvability set Gϑ(M) if it is a simple polygonal chain
or the limit of simple polygonal chains [Tϑ−ε(Lm)]

∗ as ε → +0. In addition, the direction
(positive or negative) of passing polygonal chain â has to coincide with the direction of
passing the chain m ∼ M , i.e. the corresponding polygonal chain should not be turned
inside out during the transformation of the list of half-planes.

VIII. Generalized algorithm

We consider a general case of the terminal set M , where either M or M ′ = R2 \M is
a simple polygon (convex or non-convex).

A. Algorithm description

Let M ∼ m = [m1, . . . , mn1
] and LM = [m]∗. The list LM is consistent.

We expand the base list LM to the complete list LPQ
M by additional half-planes with

outer normals from N (−P ) ∪N (Q). Any triple of successive half-planes in the list LPQ
M

is either a convex triple, or a concave one, or a zigzag triple. Additional half-planes are
contained only in convex or concave triples.

The proposed algorithm for a simple polygon M is as follows.

1. Consider the list L = LPQ
M , set Θ = 0 and calculate the weight w∗ = Ω0(L), i.e. the

value w∗ is equal to the minimal weight of the half-planes in the list L.
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2. Assume w∗ ≥ ϑ. We define the closed polygonal chain a = [Tϑ(L)]
∗. Then one of

the following three cases is possible.

(a) â = [a1]. Then Gϑ(M) is the point a1.

(b) â = [a1, a2]. Then Gϑ(M) is a linear segment with the ends a1 and a2.

(c) â = [a1, a2, . . . , an], n > 2.

If â ∈ C0 or â is a limit of simple polygonal chains [Tϑ−ε(LM)]∗ as ε → +0,
and the direction of passing polygonal chain â coincides with the direction of
passing the chain m, then â encloses the solvability set Gϑ(M).

Otherwise, there is a violation of connection or simple connection of the solv-
ability set Gτ (M) for some τ ∈ (0, ϑ), while the solvability sets are connected
and simply connected for smaller terminal times. In this case, the algorithm
can compute the solvability set Gτ (M) in the problem with the fixed terminal
time τ . Further calculation requires splitting boundary ∂Gτ (M) of the result-
ing set into connected components and applying the algorithm separately to
each component.

3. Assume now that w∗ < ϑ. Find a maximal sequence I∗ ⊂ L of adjacent half-planes
with the weight w∗, the half-plane Π

f
a preceding I∗, and the half-plane Πf

b following
I∗. One of the options listed below is possible.

(a) I∗ = L. Then Gw∗
(M) is a point and Gϑ(M) = ∅.

(b) Πf
a ‖ Πf

b . Then the half-planes Πf
a and Πf

b , shifted by the operator Tw∗
,

form edges that are partially or completely overlapped. We find the half-
plane Πs

a preceding Πf
a and the half-plane Πs

b following Πf
b in the list L. Set

b := [Tw∗
(L)]∗.

i. Assume that the half-planes Tw∗
(Πs

a) and Tw∗
(Πs

b) form other edges of the

polygonal chain b̂ that are partially or completely overlapped. Let (Πs
a)

⊥

be a half-plane obtained by rotating the half-plane Πs
a by π/2 counter-

clockwise. Remove the collection I∗ ∪ Πf
a ∪ Πf

b from the list L and insert
the half-plane (Πs

a)
⊥ between Πs

a and Πs
b, assigning the weight w∗ to it.

This ensures that the overlap of edges corresponding to Πs
a and Πs

b will be
removed at the next iteration of the algorithm.

ii. Otherwise, analysing the arrangement of the half-planes

Tw∗
(Πf

a), Tw∗
(Πs

a), Tw∗
(Πs

b), Tw∗
(Πf

b ),

we find a collection I ⊃ I∗ of successive half-planes, the removal of which
leads to disappearance of the two overlapping edges of the polygonal chain
b̂ corresponding to the half-planes Πf

a and Πf
b , while maintaining the regu-

larity of the list. Find the half-plane ΠI
a preceding the collection I and the

half-plane ΠI
b following I in the list L. Remove I from the list. Then the

half-planes ΠI
a and ΠI

b form a new convex or concave pair. Insert between
ΠI

a and ΠI
b the sequence IΘ(Π

I
a,Π

I
b) of additional half-planes, defined by

formula

IΘ(Πa,Πb) := {Π : TΘ(Π) ∈ I0(TΘ(Πa), TΘ(Πb))}. (16)

If the set IΘ(Πa,Πb) is neither empty nor a singleton, we arrange it to be
convex (concave), if the pair (Πa,Πb) is convex (concave).
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(c) Πf
a ∦ Πf

b . Then we remove the sequence I∗ from the list L. If the sequence I∗ is

neither convex nor concave, then we insert additional half-planes IΘ(Π
f
a,Π

f
b ),

defined by (16), between the half-planes Πf
a and Πf

b .

Let us the resulting list is denoted by L∗. Reset L = L∗ and calculate the weight
w∗ = ΩΘ(L∗) ∈ [Θ,+∞]. Redefine Θ = w∗ if w∗ > Θ. Go back to step 2.

If the set M ′ is a convex polygon, then the algorithm remains the same with replacing
the interpretation of the results of each step. In the case â = ∅, we obtain Gϑ = R2. If
â is a simple polygonal chain or the limit of simple polygonal chains, and the direction
of passing it coincides with the direction of passing m, then â encloses the complement
G′

ϑ(M) of the solvability set Gϑ(M). Otherwise, there is a violation of connection or
simple connection of the complement G′

τ (M) of the solvability set Gτ (M) in the problem
with fixed terminal instant τ for some τ ∈ (0, ϑ). This requires applying the algorithm
separately to connected components of the boundary ∂Gτ (M).

B. Finiteness of the general algorithm

Let us show that the generalized algorithm is finite.
Consider a cyclic list L = {Π1,Π2, . . . ,Πn} of half-planes, n ≥ 2. Set

α(L) :=
n∑

j=1

|αj|,

where αj is the angle measured from the outer normal to the half-plane Πj to the outer
normal to the half-plane Πj+1 taking into account the direction of rotation, i.e. αi > 0
corresponds to the counterclockwise rotation, and αi < 0 corresponds to the clockwise
rotation, Πn+1 = Π1. We always have α(L) ≥ 2π for a cyclic list L.

We denote by α0 the smallest modulus of the angle between the outer normals in
the set N (M) ∪ N (−P ) ∪ N (Q), while the coinciding normals are considered to be one
normal. We have 0 < |α0| < 2π.

Now, we initialize L = LM , where LM is the base list of the terminal set M , and
then start to change the list in accordance with the algorithm. We note that insertion
of additional half-spaces into the list L does not change the value α(L). Removing the
central half-plane from a convex or concave triple σ ∈ L also preserves the value α(L).

We show that removing the central half-plane from a zigzag triple reduces α(L) more
than by |α0|.

Proposition 2. Let σ = (Πa,Π,Πb) ∈ L and σ be a zigzag triple. Then

α(L)− α(L \ {Π}) > |α0|.

Proof. Let ηa, η, and ηb be the outer normals to the half-planes Πa, Π, and Πb, respec-
tively; and β1, β2, β3 be the angles between ηa and η, η and ηb, ηa and ηb, respectively.
Then removing the half-plane Π from the list L means replacing the sum |β1| + |β2| in
the definition of α(L) by the value |β3|, i.e.

α(L \ {Π}) = α(L)− (|β1|+ |β2|) + |β3|.

Let us prove that
|β3| < max{|β1|, |β2|}.
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Assume |β1| ≤ |β2|. We have β3 = β1 + β2 by definition, and β1β2 < 0 for a zigzag triple.
Then

|β3| = |β1 + β2| < |β2| = max{|β1|, |β2|}.

In the case of |β1| > |β2|, the proof is similar.
Therefore,

α(L)− α(L \ {Π}) = |β1|+ |β2| − |β3| > min{|β1|, |β2|} > |α0|.

Let us prove the finiteness of the algorithm by contradiction. An infinite sequence of
steps is possible only if, at countably many steps, the list is added no less half-planes,
than it is removed. Since half-planes are removed at each step, and are added only after
removing a half-plane from a zigzag triple, the value α(L) decreases more than by |α0|
at a countable number of steps starting from the value α(LM). By construction of the
algorithm, the current list L has more than one element. This implies α(L) ≥ 2π, that
contradicts reducing the value α(LM) more than by |α0| at a countable number of steps.
Thus, we have finiteness of the algorithm.

C. Pseudo-code for a general case

A detailed pseudo-code of the proposed generalized algorithm is given below.
Let h⊥ denote a half-plane obtained by rotating a half-plane h, defined as a vector

−→
ab, around the point a by π/2 counterclockwise.

Algorithm 2

Input:
Set M ∼ m = [m1, m2, . . . , mn1

], n1 ≥ 3: M or M ′ is a simple polygon (may be non-
convex)
Convex polygon or linear segment P ∼ [u1, u2, . . . , un2

], n2 ≥ 2
Convex polygon or linear segment Q ∼ [v1, v2, . . . , vn3

], n3 ≥ 2
Fixed terminal time ϑ > 0

Output: â = ∅ or a finite sequence â of points that defines a point or a closed polygonal
chain

1: Define the base list LM = [m]∗ of half-planes
2: Expand the list LM to the list LPQ

M by inserting additional half-planes I0(Πi,Πi+1)
between any neighbours Πi and Πi+1 in the list LM

3: Initialize the current list L = LPQ
M and the current backward time Θ = 0

4: Calculate the weight w∗ = Ω0(L)
5: while w∗ < ϑ do
6: Determine a maximal sequence I∗ ⊂ L of adjacent half-planes with the weight w∗

7: if I∗ = L then
8: return â = ∅
9: end if
10: Determine the half-plane Πf

a preceding I∗
11: Determine the half-plane Πf

b following I∗
12: if Πf

a and Πf
b are not parallel then

13: Remove I∗ from L
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14: Recount ΩL

Θ(Π
f
a) and ΩL

Θ(Π
f
b )

15: ⊲ Start of the 1st insertion into Algorithm 1
16: if I∗ is neither convex nor concave then
17: Insert additional half-planes IΘ(Π

f
a ,Π

f
b ) between Πf

a and Πf
b

18: end if
19: ⊲ End of the 1st insertion into Algorithm 1
20: else ⊲ Πf

a and Πf
b are parallel

21: ⊲ Start of the 2nd insertion into Algorithm 1
22: Determine the half-plane Πs

a preceding Πf
a

23: Determine the half-plane Πs
b following Πf

b

24: Compute c1 = ∂Tw∗
(Πf

a) ∩ ∂Tw∗
(Πs

a)
25: Compute c2 = ∂Tw∗

( Πf
b ) ∩ ∂Tw∗

(Πs
b)

26: if c1 6= c2 then
27: if Πf

a and Πf
b are collinear then

28: Remove the half-planes I∗ ∪ {Πf
a} from L

29: else ⊲ Πf
a and Πf

b are not collinear
30: if c1 is “below” c2 then
31: Remove the half-planes I∗ ∪ {Πf

b} from L
32: Insert additional half-planes IΘ(Π

f
a,Π

s
b) between Πf

a and Πs
b

33: Recount ΩL

Θ(Π
f
a) and ΩL

Θ(Π
s
b)

34: else ⊲ c1 is “above” c2
35: Remove the half-planes I∗ ∪ {Πf

a} from L
36: Insert additional half-planes IΘ(Π

s
a,Π

f
b ) between Πs

a and Πf
b

37: Recount ΩL

Θ(Π
s
a) and ΩL

Θ(Π
f
b )

38: end if
39: end if
40: else ⊲ c1 = c2
41: Set L∗ = L \ (I∗ ∪ {Πs

a,Π
f
a,Π

f
b ,Π

s
b})

42: if there are no elements with greater weight in L∗ then
43: return â = ∅
44: end if
45: if Πs

a and Πs
b are not parallel then

46: Remove the half-planes I∗ ∪ {Πf
a ,Π

f
b} from L

47: Insert additional half-planes IΘ(Π
s
a,Π

s
b) between Πs

a and Πs
b

48: Recount ΩL

Θ(Π
s
a) and ΩL

Θ(Π
s
b)

49: else ⊲ Πs
a and Πs

b are parallel
50: if Πs

a and Πs
b are collinear then

51: Remove the half-planes I∗ ∪ {Πs
a,Π

f
a ,Π

f
b} from L

52: else ⊲ Πs
a and Πs

b are not collinear
53: Remove the half-planes I∗ ∪ {Πf

a,Π
f
b} from L

54: Insert the half-plane (Πs
a)

⊥ between Πs
a and Πs

b

55: Put the weight w∗ to the half-plane (Πs
a)

⊥

56: end if
57: end if
58: end if
59: ⊲ End of the 2nd insertion into Algorithm 1
60: end if
61: Recalculate the weight w∗ = ΩΘ(L)
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62: if w∗ > Θ then
63: Set Θ = w∗

64: end if
65: end while
66: Calculate a = [L]∗ and â
67: return â

IX. Examples

Four examples of numerical computations of solvability sets for non-convex terminal
polygons are calculated. The sets M , P , Q and Gϑ(M) are given in Figs. 2–5. Dashed
lines show restored sets at instants of reconstruction of the current list of half-planes. In
Examples 1 and 2, additional half-planes take part in the solution. Examples 3 and 4
illustrate removing overlap edges of intermediate polygonal chains. In Example 4, we get
empty set for ϑ > 3.

Fig. 2. Example 1 showing the terminal polygon M (solid line) and the boundary of Gϑ(M)
(solid bold line) computed for ϑ = 3.0

Conclusion

Three main specifications of the problem are essential in the paper: the control system
is described by simple motion in the plane; terminal time of the game is fixed; the terminal
set and constraints of the players’ controls are polygonal. An important, but difficult
to verify, assumption for proper applying the developed algorithm is that the current
polygonal chain is not rigidly self-crossing in the interval of calculations. Upgrading of the
algorithm to remove this assumption seems to be an independent and difficult problem.
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Fig. 3. Example 2 showing the terminal polygon M (solid line) and the boundary of Gϑ(M)
(solid bold line) computed for ϑ = 1.4

Fig. 4. Example 3 showing the terminal polygon M (solid line) and the boundary of Gϑ(M)
(solid bold line) computed for ϑ = 3.2
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Fig. 5. Example 4 showing the terminal polygon M (solid line) and intermediate polygonal
chains. The algorithm returns Gϑ(M) = ∅ for ϑ = 3.5
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