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1 Introduction

This paper discusses time-optimal differential games with lifeline and numerical
scheme constructing the value function for such games. In games of this type, the
first player tends to lead the system to a prescribed closed target set while keeping
the trajectory inside some open set where the game takes place. The second player
hinders this, because it wins as soon as either the trajectory of the system leaves this
open set not touching the target one, or it succeeds in keeping the system infinitely
inside this open set.

Apparently, the first, who formulated a problem with lifeline, was R. Isaacs in
his book [20]. In his definitions, the lifeline is a set, after the reaching of which the
second player wins unconditionally. Significant contribution into research of games
with lifeline wasmade by L.A.Petrosyan (see e.g., [28]). However, the authors do not
know works, which would consider exhaustively games of this sort: L.A.Petrosyan
researched mostly problems with simple motion dynamics, that is, the problems
where the players’ controls are the velocities of the objects. In books [21, 22] of
N.N.Krasovskii and A.I.Subbotin, games with lifeline are analyzed as problems
with state constraints: the first player is not supposed to lead the system outside
a prescribed set. Also, problems with state constraints have been studied by many
authors (see, for example, [3, 10, 11, 19, 29]).

Problems very close to games with lifeline have been studied by French authors
P.Cardaliaguet, M.Quincampoix, P.Saint-Pierre [12–15]. For controlled systems on
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the basis of the set-valued analysis, the theory of differential inclusions, and the
theory of viability, they analyze the setswhere the controller is able to keep the system
infinitely (viability kernels). Passing to games, the authors consider a situation with
two target sets for the first and second players, respectively, to which the players
try to guide the system avoiding the target of the opposite player. Another variant
considered in these works is games with state constraints for the first player. In these
situations, the main objectives are to study victory domains of the players, that is,
the sets wherefrom the corresponding player can reach its target without hitting the
target of the opposite player (or state constraints). Also, in the terms of viability,
the upper value function of such games (the guaranteed result of the first player)
is characterized as a function, which epigraph is a viability set of the first player.
Grid-geometric algorithms are suggested for approximation of viability kernels and,
therefore, for approximation of the upper value. However, we have not found papers
of these authors where existence of the value function is proved for games of this
type and/or its coincidence with generalized solution of the corresponding boundary
value problem of a HJE is justified (although such a connection is mentioned).

The main boost that stimulated the authors to study time-optimal games with life-
line is the investigation of questions connected with numerical methods for solving
classic time-optimal games. In particular, in works [1, 2], Italian mathematicians
M.Bardi and M.Falcone together with their colleagues suggested a theoretic numer-
ical method for constructing the value function of a time-optimal game (without
lifeline) as a generalized (viscosity) solution of the corresponding boundary value
problem for HJE. The suggested procedure is of a grid type, and its proof is made
in assumption that the grid is infinite and covers the entire game space. But prac-
tical computer realization, apparently, deals with a finite grid, which covers only a
bounded part of the game space. So, the problem arises what boundary condition to
set on the outer boundary of the domain covered by the grid.M.Bardi andM.Falcone
suggest to set these conditions to plus infinity, that is, actually declaring that the sec-
ond player wins when reaching the outer boundary of this domain. Therefore, the
practical realization of the procedure solves a game with lifeline. That is why the
authors decided to fill this gap connected to the problems with lifeline in a very
general formulation.

Also, there is one more grid method for solving time-optimal problems suggested
by authors from Germany. In works by N.Botkin, K.-H.Hoffmann, V.Turova, and
their colleagues, a numerical procedure is suggested, which is based on a so-called
upwind operator involving approximations for left and right partial derivatives of
the value function in a node (see, for example, [7–9]). This algorithm is applicable to
problems with state constraints for the first player, which can be treated as problems
with lifeline.

This paper provides a numerical method for constructing the value function of a
time-optimal game with lifeline as a viscosity solution of the corresponding bound-
ary value problem for HJE. A pointwise convergence of the numerical method to the
value function is proved. The method is just the one suggested by the Italian mathe-
maticians, but its convergence should be proved anew in the framework of the new
formulation. Also, theorems on coincidence of the value functions of time-optimal



Convergence of Numerical Method for Time-Optimal … 105

problems with and without lifeline are proved under a very important assumption
that the value function is continuous in the domain where the game takes place. The
coincidence of the limit of discrete numerical solutions with the value function needs
such a continuity. The continuity can be derived, in particular, from the assumptions
of the local dynamic advantage of one player over another near their sets: if the
system position is close to the target set, then the first player can guide the system to
this set; vice versa, if the system is close to the lifeline, then the second player can
push it to the lifeline. These assumptions have been taken for the proof of existence
of the generalized solution justified in other papers [24–26] by the authors.

The structure of this paper is as follows. In Sect. 2, the formulation of the prob-
lem is given. Section 3 deals with the formulation of the numerical scheme and the
convergence of computations performed according to it. In Sect. 4, a proof of con-
vergence of the functions obtained as a result of the computations to the viscosity
solution of the corresponding boundary value problem for the HJE coincides with
the value function of the original game. Section 5 contains discussion on coincidence
of the value function of time-optimal differential games with and without lifeline. In
Sect. 6, one can see results of numerical computations performed by the realization
of the numerical procedure. The paper is finalized by a conclusion.

2 Problem Formulation

Let us consider a conflict controlled system

ẋ = f (x, a, b), t ≥ 0, a ∈ A, b ∈ B, (1)

where x ∈ R
n is the phase vector of the system; a and b are the controls of the first and

second players constrained by the compact sets A and B in their Euclidean spaces.
We are given a compact set T and an open set W ⊂ R

n such that T ⊂ W and the
boundary ∂W is bounded. Denote G := W \ T andF := R

n \ W (see Fig. 1). The
game takes place in the set G ; the objective of the first player is to guide the system to
the set T as soon as possible keeping the trajectory outside the setF ; the objective
of the second player is to guide the system to the setF , or if it is impossible, to keep
the trajectory inside the set G forever, or if the latter is impossible too, to postpone
reaching the set T as long as he can.

Such a game can be called a game with lifeline; the boundary ∂F of the setF is
the lifeline where the second player wins unconditionally.

We assume that the following conditions are fulfilled:

C.1 The function f : R
n × A × B → R

n is continuous in all variables andLipschitz
continuous in the variable x : for all x (1), x (2) ∈ R

n , a ∈ A, b ∈ B

∥
∥ f (x (1), a, b) − f (x (2), a, b)

∥
∥ ≤ L‖x (1) − x (2)‖; (2)
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Fig. 1 Sets T , F , and G

moreover, it satisfies Isaacs’ condition:

min
a∈A

max
b∈B

〈

p, f (x, a, b)
〉 = max

b∈B
min
a∈A

〈

p, f (x, a, b)
〉 ∀p ∈ R

n . (3)

Here and below, the symbol 〈·, ·〉 stands for the scalar product.
C.2 The boundary ∂G of the set G (that is the boundaries ∂T and ∂F ) is compact,

smooth, and has a bounded curvature.
Remark. In our previous paper [26], we do not demand the boundedness of
the curvature of G . When that paper was written, we thought that a sufficient
smoothness of the boundary provides the boundedness of its curvature. It is
necessary to prove existence of a generalized solution of the corresponding
boundary problem of a Hamilton–Jacobi equation. However, after consultations
with specialists in topology, it turned out that even infinitely smooth bounded
curve in the plane can have an unbounded curvature. So, this demand should be
formulated explicitly.

C.3 One can find a constant c > 0 and a bounded uniformly continuous function
η : clG ∩ O(∂G , c) → R

n such that the embedding O
(

x + tη(x), ct
) ⊆ G is

true for all x ∈ clG ∩ O(∂G , c) and 0 < t ≤ c. Here and below, O(y, r) is
an open ball of the radius r with the center at the point y, O(X, r) := {

x :
dist(x, X) < r

}

and O(∅, R) = ∅.
Remark. It seems to us that the latter condition C.3 follows from the previous
one C.2, but nowwe have no proof of this implication. So, we explicitly demand
existence of the function η, which is called the generalized normal.

The players’ aims of the mentioned kind can be formalized in the following way.
Let the function x(·; x0) be a trajectory of the system emanated from the initial point
x(0) = x0. We consider two instants

t∗ = t∗
(

x(·, x0)
) = min

{

t ≥ 0 : x(t; x0) ∈ T
}

,

t∗ = t∗(x(·, x0)
) = min

{

t ≥ 0 : x(t; x0) ∈ F
}

,

which are the instants when the trajectory x(·; x0) hits for the first time the setsT and
F , respectively. If the trajectory doesn’t arrive at the set T (F ), then the value t∗
(t∗) is equal to +∞.
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To say what is a system trajectory, one can use either the formalization with
nonanticipating strategies, or the positional formalization of N.N.Krasovskii and
A.I.Subbotin [21, 22]. In the latter case, the feedback strategies of the first and the
second player are functions a(·) : R

n → A and b(·) : R
n → B, respectively.

We define the result of the game on the trajectory x(·; x0) as

τ
(

x(·; x0)
) =

{

+∞, if t∗ = +∞ or t∗ < t∗,
t∗, otherwise.

(4)

In [23], the authors prove that a time-optimal problem with lifeline has the value
function T (x).

The unboundedness of the value function and cost functional can cause some
uneasiness of a numerical research of game (1), (4). For this reason, one often sub-
stitutes the unbounded cost functionalwith a boundedone bymeans of theKruzhkov’s
transform:

J
(

x(·, x0)
) =

{

1 − exp
(−τ

(

x(·; x0)
))

, if τ
(

x(·; x0)
)

< +∞,

1, otherwise.
(5)

In such a case, the value function v(x) also becomes bounded and its magnitude
belongs to the range from zero to one:

v(x) =
{

1 − exp
( − T (x))

)

, if T (x) < +∞,

1, otherwise.
(6)

3 Numerical Scheme

In general, the numerical scheme construction and justification of its convergence
are analogous to the ones in paper [2] where the numerical scheme for the classic
time-optimal problem is constructed and its convergence is proved. Herewith, the
value function is characterized as the unique generalized (viscosity) solution of the
corresponding boundary value problem for HJE.

3.1 Discrete Scheme

Let us replace the continuous dynamics with a discrete one by the time step h > 0:

xn = xn−1 + h f (xn−1, an−1, bn−1), n = 1, . . . , N , x0 is given,

where an ∈ A and bn ∈ B.
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By the discrete Dynamic Programming Principle, one can get the following char-
acterization for the value function wh(·) of the discrete time problem:

wh(x) =

⎧

⎪⎨

⎪⎩

γ max
b∈B

min
a∈A

wh
(

z(x, a, b)
) + 1 − γ, if x ∈ G ,

0, if x ∈ T ,

1, if x ∈ F .

Here, γ = e−h , z(x, a, b) = x + h f (x, a, b).
Further, let us describe the space discretization. Let us consider a gridL with the

step k, which covers the entire spaceR
n and consists of nodesqi1,...,in = (xi1 , . . . , xin ),

i1, . . . , in ∈ Z, xi j = ki j . (Generally speaking, steps along different axes can differ,
but this fact doesn’t change the main idea of the numerical scheme construction.)
Here and below, mostly, a linear indexation qν , ν ∈ Z, for the nodes of the grid L
is used. The symbol LT stands for the set of those nodes of the grid L , which
belong to the set T ; the symbolLG denotes the collection of nodes falling into the
set G ; and the symbolLF stands for the set of nodes from the setF . In theoretical
constructions, the grid is assumed infinite.

For every point x ∈ R
n , one can find a simplex S(x)with vertices

{

ql(x)
}

fromL
such that the point x belongs to the simplex S(x) and S(x) does not contain other
nodes of the grid. It is assumed that with choosing the grid L , we also choose a
separation of the game space to simplices with their vertices at nodes of the grid.
On the basis of S(x), one can obtain the barycentric (local) coordinates λl(x) of the
point x with respect to the vertices ql(x) of the simplex S(x):

x =
n+1
∑

l=1

λl(x)ql(x), λl(x) ≥ 0,
n+1
∑

l=1

λl(x) = 1.

Sometimes, the arguments of the coefficients λ and vertices q will be omitted if they
are clear from the context.

Let us substitute the function wh(·)with a new one w(·), which magnitudes w(qν)

at the nodes qν of the grid L form an infinite vector W = (

w(qν)
)

ν∈Z. The magni-
tude w(x) at some point x , which is not a node of the grid, can be reconstructed by
means of the following piecewise-linear approximation based on the local coordi-
nates of the point x :

wloc(x, W ) =
n+1
∑

l=1

λl(x) w
(

ql(x)
)

. (7)

Hereby, the characterization of the value function of a fully discrete problem is
obtained:
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w(qν) =

⎧

⎪⎨

⎪⎩

γ max
b∈B

min
a∈A

wloc
(

z(qν, a, b), W
) + 1 − γ, if qν ∈ LG ,

0, if qν ∈ LT ,

1, if qν ∈ LF .

This characterization is of a recursive kind, because the magnitude w(qν) at some
node qν depends on themagnitude of the local reconstructionwloc. Note that the latter
in its turn depends on the magnitudes of the function w(·) at nodes of the grid, which
may include the node qν . Such kind of relations obtained is typical for the dynamic
programming principle. In the following, on the basis of this formula, an iterative
numerical method for construction of the vector W and function w is proposed.
Moreover, from the definition of w(·), one can see that in a practical realization of
the numerical method, it is necessary to remember values of this function only at the
nodes from LG . If the set G is bounded, then LG contains only finite number of
nodes and can be represented in a computer.

For the chosen gridL = {qν}ν∈Z, we denote byM the set of infinite vectors with
the elements W = (

w(qν)
)

ν∈Z. We denote byM1 those vectors in the setM , which
elements w(qν) satisfy the inequality 0 ≤ w(qν) ≤ 1. For every s ∈ Z, we define an
operator Fs : M → R using a vector W = (

w(qν)
)

ν∈Z in the following way:

Fs(W ) =

⎧

⎪⎨

⎪⎩

γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b), W
) + 1 − γ, if qs ∈ LG ,

0, if qs ∈ LT ,

1, if qs ∈ LF .

Here, wloc : R
n × M → R is the local reconstruction (7) of the function w(·) cor-

responding to the vector W . The manifold of values of the operators Fs over all
indices s (that is, over all nodes qs) defines an operator F : M → M .

A partial order can be defined in the set M using the elementwise comparison:
W1 ≤ W2 ⇔ ∀ν ∈ Z w1(qν) ≤ w2(qν). Also, in M1, one can reasonably introduce
the norm ‖W‖∞ = sup

{

w(qν) : ν ∈ Z
}

.
Let us prove the following lemma on properties of the operator F analogous to

the one from paper [2, pp. 124–125, Proposition 2.1].

Lemma 1 The operator F : M → M has the following properties:

1. F(M1) ⊆ M1;
2. F is monotone with respect to the partial order in M ;
3. F is a contraction map in M1 with respect to the norm ‖ · ‖∞.

Proof Basically, the proof repeats the analogous one in [2, pp. 124–125].

1. Let W ∈ M1 and qs ∈ LG . Then

Fs(W ) = γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Wm
(

z(qs, a, b)
) + 1 − γ.
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Here, Wm(z) is the element of the vector W corresponding to the node, which is
the mth vertex of the simplex S

(

z(qs, a, b)
)

.
Since, λm

(

z(qs, a, b)
) ≥ 0,

∑
λm

(

z(qs, a, b)
) = 1, and 0 ≤ Wm ≤ 1, we have

0 ≤ Fs(W ) ≤ γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
) + 1 − γ = γ + 1 − γ = 1.

If qs /∈ LG , then Fs(W ) = 0 or Fs(W ) = 1. Hence, it appears that F : M1 →
M1.

2. Let U, V ∈ M and U ≥ V . If qs ∈ LG , then

Fs(V ) − Fs(U ) = γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Vm
(

z(qs, a, b)
)

− γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Um
(

z(qs, a, b)
)

.

Let us choose the control a(b) of the first player attaining the minimum in Fs(U )

for a fixed b. Then the minuend in the inequality increases, because a(b) not
necessarily attains the minimum in Fs(V ), while the subtrahend keeps its value.
We get

γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Vm
(

z(qs, a, b)
)

− γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Um
(

z(qs, a, b)
)

≤ γ max
b∈B

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Vm
(

z
(

qs, a(b), b
))

− γ max
b∈B

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Um
(

z
(

qs, a(b), b
))

.

Now, let us consider the control b of the second player attaining the maximum in
the expression for the minuend, that is,

b ∈ Argmax
b∈B

[

γ

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Vm
(

z
(

qs, a(b), b
))

]

.
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It follows that

γ max
b∈B

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Vm
(

z
(

qs, a(b), b
))

− γ max
b∈B

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Um
(

z
(

qs, a(b), b
))

≤ γ

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))(

Vm
(

z
(

qs, a(b), b
))

− Um
(

z
(

qs, a(b), b
))) ≤ 0.

If qs ∈ LT or qs ∈ LF , then Fs(V ) − Fs(U ) = 0. Hence, F is the monotone
operator.

3. Let U, V ∈ M1. If qs ∈ LG , then

∣
∣Fs(V ) − Fs(U )

∣
∣ ≤ γ

n+1
∑

m=1

λm
(

z
(

qs , a(b), b
))

× ∣
∣Vm

(

z
(

qs , a(b), b
)) − Um

(

z
(

qs , a(b), b
))∣

∣

≤ γ max
m

∣
∣Vm

(

z
(

qs , a(b), b
)) − Um

(

z
(

qs , a(b), b
))∣

∣

×
n+1
∑

m=1

λm
(

z
(

qs , a(b), b
)) ≤ γ‖V − U‖∞.

It holds for every s ∈ Z.
If qs ∈ LT or qs ∈ LF , then Fs(V ) − Fs(U ) = 0. So, it immediately follows
that the function F is a contraction map, since γ = e−h < 1.

As a consequence from this lemma, one can obtain that there exists a unique
fixed point W ∈ M1 of the operator F , which determines a function w(·) in R

n ,
w(x) ∈ [0, 1]. This function depends on the time h and space k discretization steps
of the original problem:

w(x) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

m
λmw(qm), if x /∈ L and x = ∑

m
λmqm,

γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ, if qs ∈ LG ,

0, if qs ∈ LT ,

1, if qs ∈ LF .

(8)



112 N. V. Munts and S. S. Kumkov

3.2 Viscosity Solution of Boundary Problem for HJE

Let us consider the following boundary value problem for HJE:

z + H(x, Dz) = 0, x ∈ G ,

z(x) = 0 if x ∈ ∂T , (9)

z(x) = 1 if x ∈ ∂F .

Here and below, the symbol Dz denoted the gradient of the function z. The function H
is called the Hamiltonian and in the case of dynamics (1) is defined as follows:

H(x, p) = max
a∈A

min
b∈B

〈

p,− f (x, a, b)
〉 − 1, x, p ∈ R

n. (10)

Equations of this type can have no classical solution. That is why we use the notion
of the generalized viscosity solution introduced in [17] to deal with this problem.
In book [30], an alternative method of obtaining a generalized solution of HJE was
introduced. It is called the generalized minimax solution. Also in book [30], it is
proved that viscosity and minimax solutions coincide at the points of continuity.

In [24, 25], the authors prove that the value function of game (1), (5) is a vis-
cosity solution of problem (9). The proof demands smoothness of boundaries ∂T
and ∂F , the boundedness of these boundaries curvature. It was performed under
the assumption of the dynamical advantage of each player on the boundaries of the
corresponding sets:

∀x ∈ ∂T min
a∈A

max
b∈B

〈

nT (x), f (x, a, b)
〉

< 0,

∀x ∈ ∂F max
b∈B

min
a∈A

〈

nF (x), f (x, a, b)
〉

< 0.
(11)

Here, nT (x)
(

nF (x)
)

is a normal vector to the boundary ∂T (∂F ) of the setT (F )
at the point x directed outward the corresponding set or (what is the same) inward
the set G . The sense of these relations is that if the system is at the boundary of the
set T (F ), then the first (second) player can guarantee leading the trajectory of the
system inside the corresponding set despite the action of the opponent. Combination
of these assumptions results in the continuity of the value function inside the set G .
Indeed, from the results of paper [26], it follows that under these assumptions an
upper generalized solution exists, which is continuous in clG . Then, the statements
in [30, Sect. 18.6, pp. 224–225] imply that a generalized solution exists, which is
continuous in G . Moreover, since the value function coincides with the generalized
solution, it is continuous too (the coincidence is proved in [26]).

Definition 1 ([2], p. 112, Definition 1.3) For some domain Ω , an upper semicon-
tinuous function u(·) is called a viscosity subsolution of Eq. (9) in the domain Ω if
for all ϕ ∈ C1(Ω) and for any local maximum point y ∈ Ω for u − ϕ, the inequal-
ity u(x) + H

(

x, Dϕ(x)
)

� 0 holds.
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Definition 2 ([2], p. 112, Definition 1.3) For some domain Ω , a lower semicontin-
uous function u(·) is called a viscosity supersolution of Eq. (9) in the domain Ω if
for all ϕ ∈ C1(Ω) and for any local minimum point y ∈ Ω for u − ϕ, the inequal-
ity u(x) + H

(

x, Dϕ(x)
)

� 0 holds.

Definition 3 Let us consider two sequences of real numbers hn > 0 and kn > 0
(which are time and space discretization steps). We will refer to them as admissible
sequences if hn → 0 and kn/hn → 0 as n → ∞.

Let us consider admissible sequences of real numbers hn > 0, kn > 0, and a
sequence of the solutions wn of problem (8) corresponding to these admissible
sequences.

The proof of the facts given in the next section is based on the notion of the weak
limit in the viscosity sense introduced in [1, 6]. An upper and a lower limit of the
functional sequence wn in the viscosity sense are defined as follows:

lim sup
(y,n)→(x,∞)

wn(y) := lim
δ→0+

sup
{

wn(y) : |x − y| ≤ δ, n ≥ 1/δ
}

,

lim inf
(y,n)→(x,∞)

wn(y) := lim
δ→0+

inf
{

wn(y) : |x − y| ≤ δ, n ≥ 1/δ
}

.
(12)

Note that these limits exist if the functional sequence wn is locally uniformly
bounded [1, p. 288, Definition 1.4].

Definition 4 For some domain Ω , an upper semicontinuous function u : clΩ →
R satisfies the boundary condition u + H(x, Du) ≤ 0 at the boundary ∂Ω in the
viscosity sense if for all ϕ ∈ C1(clΩ) and a point x ∈ ∂Ω such that the function
u − ϕ has a local maximum at x , the inequality u(x) + H(x, Dϕ(x)) ≤ 0 holds.

Definition 5 For some domain Ω , a lower semicontinuous function u : clΩ →
R satisfies the boundary condition u + H(x, Du) ≥ 0 at the boundary ∂Ω in the
viscosity sense if for all ϕ ∈ C1(clΩ) and a point x ∈ ∂Ω such that the function
u − ϕ has a local minimum at x , the inequality u(x) + H(x, Dϕ(x)) ≥ 0 holds.

4 Numerical Scheme Convergence

Let us formulate and prove a lemma for a time-optimal game with lifeline analogous
to [2, p. 127, Lemma 2.2]. Some derivations in the original lemma were omitted.
For example, the proof for an upper solution was absent, proof of the inequalities
analogous to (19) and (20) from this paper was not completely performed, and some
essential remarks were missed (e.g., in the original lemma the function ϕ is defined
on the closure of the set of the game but is used in a such a way that it is defined on
the whole R

n).

Lemma 2 Let us consider admissible sequences of real numbers hn > 0 and kn > 0,
and let wn be the corresponding sequence of solutions (8). Denote
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v(x) := lim sup
(y,n)→(x,∞)

wn(y), v(x) := lim inf
(y,n)→(x,∞)

wn(y). (13)

Then the functions v and v are, respectively, a viscosity subsolution and supersolution
of the boundary value problem (9) with the boundary conditions

v ≥ 0 on ∂T , (14)

v ≤ 0 or v + H
(

x, Dv(x)
) ≤ 0 on ∂T , (15)

v ≥ 1 or v + H
(

x, Dv(x)
) ≥ 0 on ∂F , (16)

v ≤ 1 on ∂F . (17)

The second inequalities in (15) and (16) are understood in the viscosity sense.

Proof Proofs of the facts that the boundary conditions (14), (15) are fulfilled and
that v is a viscosity subsolution are similar to those from [2, pp.127–129]. The
fulfilment of the last boundary condition (17) is obvious from the construction of the
function v. Therefore, it is necessary to show only that the function v is a viscosity
supersolution and that the boundary condition (16) holds. Let us prove these facts
simultaneously (in (16), we prove the second inequality).

Choose a function ϕ ∈ C1(Rn) and a point y ∈ clG such that the function v − ϕ
attains the local strict minimum at the point y. Although, the function ϕ in the
definition of the viscosity solution is considered only at the set clG , we define it in
the whole space R

n , because we shall need it henceforth; restriction of the function
ϕ to the set clG is smooth. As far as the property of the point y doesn’t change under
adding a constant to the function ϕ, we consider that ϕ(y) = v(y). The point y can
belong to the set G or to the boundary ∂F . The case when the point y belongs to
the boundary ∂T does not require consideration, because it is taken into account in
condition (14). If y ∈ ∂F and v(y) ≥ 1, then inequality (16) holds. Thus hereafter,
we shall assume that v(y) < 1 if y ∈ ∂F and v(y) ≤ 1 if y ∈ G .

It has to be shown that v(y) + H
(

y, Dϕ(y)
) ≥ 0. Let us choose a sequence of

points xn such that

min
cl
(

G ∩B(y,1)
)(wn − ϕ) = (wn − ϕ)(xn).

The basic property of weak limits in the viscosity sense [1, 5, 18] is the existence
of a subsequence (we suppose that it is the sequence xn itself) such that xn →
y and wn(xn) → v(y) as n → ∞. It means that one can choose such a number
ε > 0 that B(y, ε) ⊂ G if y ∈ G or ϕ(y′) < 1 − ε for every y′ ∈ B(y, ε) if y ∈
∂F . It can always be achieved by means of decreasing ε, because if y ∈ ∂F , then
ϕ(y) = v(y) < 1. Moreover, one can choose such a sufficiently big number n that
the following inequalities hold

(a) xn ∈ B(y, ε/3) holds, because xn converges to the point y as n → ∞;
(b)

∣
∣hn f (xn, a, b)

∣
∣ ≤ ε/3 holds, because hn tends to 0;
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(c) kn · max
{

2 + σ,
√

d
} ≤ ε/3 holds, because the sequence kn tends to 0; here,

σ = max
{∣
∣Dϕ(z)

∣
∣ : z ∈ B(y, 1)

}

;
(d) ϕ(xn) − wn(xn) > −ε holds, because we assume that ϕ(y) = v(y); hence,

ϕ(xn) < wn(xn) (as ϕ(y′) < v(y′) and v(y′) ≤ wn(y′) for all y′ in some suf-
ficiently small neighborhood of the point y; the points xn belong to this neigh-
borhood for indices n starting from some sufficiently large index).

The following calculations are made for n fixed, so we temporarily omit the
subscript in hn , kn , wn , xn , γn = e−hn .

1. Let y ∈ G . Let us write the local coordinates of the point x via the vertices qs

of the corresponding simplex: x = ∑

s λsqs . Note that qs ∈ B(y, ε), because x ∈
B(y, ε/3) and qs ∈ B(x, ε/3) (the latter is true due to k

√
d ≤ ε/3). So, qs ∈ G ,

whence it follows that for w(qs) the following representation holds

w(qs) = γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ.

2. Let y ∈ ∂F . Then−ε < ϕ(x) − w(x) < 1 − ε − w(x) ⇒ w(x) < 1. So, if x =
∑

s λsqs , then there exists a node qs such that λs �= 0 and w(qs) < 1. Then again
for w(qs), the following representation holds

w(qs) = γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ.

Let us note that

w(qs) = γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ

≥ γ min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ

for every b ∈ B. Moreover, for every ρ > 0, there exists a value as(ρ) (for example,
the one attaining the minimum) such that the following inequality holds

γ min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ > γwloc

(

z
(

qs, as(ρ), b
)

,W
) + 1 − γ − ρh.

We denote by zs(ρ, b) = z
(

qs, as(ρ), b
) = qs + h f

(

qs, as(ρ), b
)

. Whence it follows
that for every ρ > 0 the relation holds

w(qs) − γwloc
(

zs(ρ, b),W
) − (1 − γ) > −ρh ∀b ∈ B. (18)

Let zs = ∑

p μpqp and b is arbitrary. Now, let us prove that

w(x) − ϕ(x) ≤ wloc
(

zs(ρ, b),W
) − ϕ

(

zs(ρ, b)
) + σk

√
d + o1, (19)
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where o1 = o(
∣
∣zs(ρ, b) − qp�

∣
∣) and qp� is such a vertex of the simplex S

(

zs(ρ, b)
)

that ϕ(qp� ) is the minimum magnitude of ϕ over the vertices of this simplex. Here
and below, all o-variables are considered as n → ∞.

If zs(ρ, b) ∈ clG , then, in virtue of condition (c), we obtain zs(ρ, b) ∈ B(qs, ε/3).
Sinceqs ∈ B(x, ε/3), one has zs(ρ, b) ∈ B(x, 2ε/3) ⊂ B(x, ε). In this case, inequal-
ity (19) holds, because x is the point of a local minimum of the function w − ϕ.

Now, let zs(ρ, b) /∈ clG . Two cases are possible

1. There is a term in the representation of zs such that μp �= 0 and qp ∈ clG .
Then, similarly, we get qp ∈ B

(

zs(ρ, b), ε/3
)

, zs(ρ, b) ∈ B(qs, ε/3), and qs ∈
B(x, ε/3).Hence,qp ∈ B(x, ε). From this, it follows thatw(x)− ϕ(x)≤w(qp) −
ϕ(qp), because x is the point of a local minimum of the function w − ϕ.

2. For all p such that μp �= 0, one has that qp /∈ clG . Recall that the function ϕ
is defined on the whole space R

n and that for every y′ ∈ B(y, ε) the condition
ϕ(y′) < 1 − ε holds. Then, in virtue of condition (d), we get

w(x) − ϕ(x) < ε < 1 − ϕ(qp) = w(qp) − ϕ(qp),

because the function w(qp) = 1 at the node qp ∈ F .

Then

w(x) − ϕ(x) ≤
∑

p

μp
(

w(qp) − ϕ(qp)
) =

∑

p

μpw(qp) −
∑

p

μpϕ(qp)

≤ wloc
(

zs(ρ, b),W
) −

∑

p

μpϕ(qp� ) = wloc
(

zs(ρ, b),W
) − ϕ(qp� ),

where the index p� is as defined above.
Note that

∣
∣ϕ

(

zs(ρ, b)
) − ϕ(qp� )

∣
∣ ≤ σ

∣
∣zs(ρ, b) − qp�

∣
∣ + o(

∣
∣zs(ρ, b) − qp�

∣
∣)

< σk
√

d + o(
∣
∣zs(ρ, b) − qp�

∣
∣).

Then −ϕ(qp� ) ≤ −ϕ
(

zs(ρ, b)
) + σk

√
d + o1. Hence, we obtain inequality (19).

Now, let us show that
∣
∣w(x) − w(qs)

∣
∣ ≤ σk

√
d.

Since x , qs belong to one simplex S, then w is affine in the segment X = [x, qs].
As function (w − ϕ)

∣
∣

X attains minimum at the point x , we get

|w(x) − w(qs)|
k
√

d
≤ |w(x) − w(qs)|

|x − qs | = |DXw| = |DXϕ| � σ.

We denote by DX g a derivative of the restriction of a function g to the set X as a
derivative of a function of one variable.
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Also, let us note that

∣
∣ϕ

(

zs(ρ, b)
) − ϕ

(

x + h f (x, as(ρ), b)
)∣
∣ ≤ σ

∣
∣zs(ρ, b) − x − h f (x, as(ρ), b)

∣
∣

= σ
∣
∣qs + h f (qs, as(ρ), b) − x − h f (x, as(ρ), b)

∣
∣

≤ σ
(|qs − x | + h

∣
∣ f (qs, as(ρ), b) − f (x, as(ρ), b)

∣
∣
) ≤ σ(k

√
d + hLk).

(20)

Now, let us apply the educed inequalities to (18) for any b ∈ B:

− ρh < w(qs) − γwloc
(

zs(ρ, b),W
) − (1 − γ)

≤ w(x) − γwloc
(

zs(ρ, b),W
) − (1 − γ) + σk

√
d

= (1 − γ)w(x) + γ
(

w(x) − wloc
(

zs(ρ, b),W
)) − (1 − γ) + σk

√
d

≤ (1 − γ)w(x) + γ
(

ϕ(x) − ϕ
(

zs(ρ, b)
)) − (1 − γ) + (1 + γ)σk

√
d + γo1

≤ (1 − γ)w(x) + γ
(

ϕ(x) − ϕ
(

x + h f (x, as, b)
))

− (1 − γ) + (1 + 2γ + γhL)σk
√

d + γo1,

where L is the Lipschitz constant for the function f from condition (2).
Since ρ is arbitrary, it holds

0 ≤ 1 − γn

hn
wn(xn)

+ min
b∈B

max
a∈A

{

γn
ϕ(xn) − ϕ

(

xn + hn f
(

xn, a, b)
)

hn
− 1 − γn

hn

}

+ σ
kn

hn

√
d(1 + 2γn + γnhn L) + γo1.

Passing to the limit in n to the infinity, we obtain 0 ≤ v(y) + H
(

y, Dϕ(y)
)

. That
establishes relation (16) as far as the fact that v and v are viscosity subsolution and
supersolution of problem (9) with the boundary conditions (14)–(17) in the viscosity
sense.

Now, we can prove a theorem on the convergence of the proposed numerical
scheme analogous to [2, pp. 125–129, Theorem 2.3]. Firstly, it should be noted
that the proof of the auxiliary theorem for a time-optimal problem with lifeline
corresponding to [2, pp. 117–118, Theorem 1.10] can be conducted in an analogous
way with the set Ω substituted by the set G and is not given here.

Theorem 1 Assume that Conditions C.1, C.2, and C.3 hold. Also, suppose that
the value function v (6) of game (1), (5) is continuous on the set clG . Then the
sequence

{

wn
}

converges to the function v = v = v as n → ∞ uniformly on every
compact set K ⊂ clG .
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Note that conditions (11) are crucial for all constructions and argument carried
out by the authors, in particular, in the framework of this paper. Theorem 1 is proved
under continuity of the function v, which follows from these assumptions (as it was
said in Sect. 3.2).

Proof By Lemma 2, function v (13) is a viscosity subsolution of the boundary value
problem (9) and the function v is a viscosity supersolution by virtue of [2, pp. 115–
116, Theorem 1.6], which is common for the boundary value problems for the HJE.
Applying Theorem 1.1 from [4, pp. 23–27], we get that for function v (13), the
inequality v ≤ v holds on clG . In the same manner, it is proved that v ≤ v. So,
v ≤ v in clG . By definition of v and v (as lim inf and limsup of wn), one has v ≤ v.
From these two inequalities, we obtain v = v = v.

Let us show that the sequence
{

wn
}

converges to the function v uniformly on com-
pact sets. Suppose by contradiction that there exist ε > 0, nm → ∞, and xm ∈ K
such that xm → x and

∣
∣wnm (xm) − v(xm)

∣
∣ > ε. This implies that the sequences can

be chosen in such a way that eitherwnm (xm) > v(xm) + ε, orwnm (xm) < v(xm) − ε.
Passing to the limit over m and using the definition of v and v and the continu-
ity of v, we obtain either v(x) ≥ v(x) + ε, or v(x) ≤ v(x) − ε what contradicts to
coincidence of either v and v, or v and v.

5 Connection Between Value Functions of Problems with
and Without Lifeline

In this section, we consider the problem of coincidence of the value functions (not
processed by Kruzhkov’s transform, that is, representing the time of the optimal
motion) for the problems with and without lifeline. Let us consider a classic time-
optimal problemwith dynamics (1), the constraints A and B for the players’ controls,
and the terminal set T . The result of such a game on a trajectory x(·; x0) emanated
form the initial point x0 is determined by the payoff functional

τ̃
(

x(·; x0)
) =

{

min
{

t : x(t; x0) ∈ T
}

,

+∞, if ∀t x(t; x0) /∈ T .

Here and below, notations with a tilde stand for the classic time-optimal game (with-
out lifeline).

Let us introduce the guaranteed results of the players and the value function as it
is described in books [21, 22]. We define a functional

τ̃ε

(

x(·)) := min
{

t ∈ R
+ : x(t) ∈ Tε

}

,

where Tε is the ε-neighborhood of the terminal set T : Tε := T + B(0, ε), the
symbol 0 denotes the origin in the corresponding space. The sign + here stands for
the Minkowski sum.
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Let x̄ ∈ B(x0, ε). Denote by X(x̄,A ,Δ) the set of stepwise motions of the
first player emanated under its strategy A from the point x̄ in the discrete con-
trol scheme [21, 22] with the time step Δ. Also, denote by X(x0,A ) the set of
constructive motions emanated from the point x0 [21, 22] under the strategyA . The
guaranteed result T̃ 0

1 (x0) of the first player at the point x0 is defined as follows:

T̃ ε
1 (x0,A ) := sup

{

τ̃ε

(

x(·)) : x(·) ∈ X(x0,A )
}

,

T̃ ε
1 (x0) := inf

A ∈A
T̃ ε
1 (x0,A ), T̃ 0

1 (x0) := lim
ε↓0 T̃ ε

1 (x0).

The guaranteed result T̃ 0
2 (x0) of the second player at the point x0 is defined in a

similar way:

T̃ ε
2 (x0,B) := inf

{

τ̃ε

(

x(·)) : x(·) ∈ X(x0,B)
}

,

T̃ ε
2 (x0) := sup

B∈B
T ε
2 (x0,B), T̃ 0

2 (x0) := lim
ε↓0 T̃ ε

2 (x0),

where X(x0,B) is the set of constructive motions of the second player emanated
from the point x0 under its strategy B.

It is known that under the assumptions made above, the value function T̃ of a
classic time-optimal problem exists. So, the following equality holds [22]:

T̃ (x0) := T̃ 0
1 (x0) = T̃ 0

2 (x0).

Now, let us consider a classic time-optimal problem and a time-optimal problem
with lifeline with the same dynamics and sets A, B, and T . We choose a point x0 ∈
R

n \ T . Let the magnitude of the value function of classic time-optimal problem be
T̃ (x0) = θ.

By Condition C.1, the function f is continuous and satisfies the condition of the
sublinear growth, that is, there exists a number α > 0 such that for every x ∈ R

n ,
a ∈ A, and b ∈ B the following inequality holds

∥
∥ f (x, a, b)

∥
∥ ≤ α

(

1 + ‖x‖).

It follows from the global Lipschitz condition. Let us consider a function

M
(

x
) := max

a∈A, b∈B

∥
∥ f (x, a, b)

∥
∥,

which provides an upper estimate for the magnitude of possible velocities of the
systemat the point x . This function also is continuous and satisfies the condition of the
sublinear growthwith the same constantα; themaximum is attained, because the sets
A and B are compact. Let us choose measurable realizations a(·) and b(·) of controls
of the first and second players defined for t � 0. They generate a trajectory x(·) =
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x
(·; x0) of the system emerged from the point x0. Using the standard reasoning

involving the Grönwall’s lemma, one can obtain the following estimate: for any
trajectory x(·) emanated from a point x0 under some admissible controls a(·) and
b(·) of the players, it is true that M

(

x
(

t; x0, a(·), b(·))) ≤ α
(

1 + ‖x0‖
)

eαθ for any
t ∈ [0, θ].

Let us choose the constant M̃ such that M̃ ≥ α
(

1 + ‖x0‖
)

eαθ.
Firstly, we consider a classic time-optimal problem. Let us denote an opti-

mal strategy of the first player as A ∗. We choose a point x̄ ∈ B(x0, ε) and a
time partition Δ with the diameter less than ε. Since the strategy A ∗ is opti-
mal, for every stepwise motion x(·) ∈ X(x̄,A ∗,Δ) of the system, the inequality
τ̃
(

x(·)) ≤ θ + ε holds. Hence,
{

x(t) : t ∈ [0, θ + ε)
} ⊂ B(x0, θM̃). Passing to the

limit ε → 0, we obtain that for every constructive motion x(·) ∈ X(x0,A ∗), the
embedding

{

x(t) : t ∈ [0, θ]} ⊂ B(x0, θM̃) holds.
Now, let us consider a time-optimal game with lifeline; the guaranteed results of

the first and the second players at the point x0 are T1(x0) and T2(x0). As the game
set G , we take a set such that B(x0, θM̃) ⊂ G ∪ T = W . In the game with lifeline,
the same strategy A ∗ guarantees the same result for the first player. In other words,
under the strategyA ∗ for every stepwise motion x(·) ∈ X(x̄,A ∗,Δ), the inequality
τ
(

x(·)) ≤ θ holds. It is true, because all the trajectories are embedded into the setW ;
as a result, the second player does not get any advantage connected to the existence
of the lifeline. Hence, T1(x0) ≤ θ.

Let us conduct similar considerations from the point of view of the second player.
Let us take an optimal strategy B∗ of the second player in the classic time-optimal
problem and construct a set of stepwise motions X(x̄,B∗,Δ). For every stepwise
motion x(·) ∈ X(x̄,B∗,Δ), the inequality τ̃

(

x(·)) ≥ θ + ε holds. Hence,
{

x(t) :
t ∈ [0, θ + ε)

} ⊂ B(x0, θM̃). Passing to the limit ε → 0, we get that the set G is
such that all constructive motions x(·) from the setX(x0,B∗) are embedded intoW .
Thus, the inequality τ

(

x(·)) ≥ θ holds also in the time-optimal problemwith lifeline,
and T2(x0) ≥ θ. So, T2(x0) ≥ θ ≥ T1(x0). For the time-optimal problemwith lifeline,
the classic inequality T2(x0) ≤ θ ≤ T1(x0) also holds. Hence, T2(x0) = θ = T1(x0).

Then, we get that if we choose the set G such that B(x0, θM̃) ⊂ W , then the value
function of the classic time-optimal problem coincides with the value function of the
corresponding time-optimal problem with lifeline at the point x0.

So, we have proved the following

Theorem 2 Assume that Condition C.1 holds. Let the value function of a classic
time-optimal problem T̃ (x0) at a point x0 be equal to θ. Then there exists such
a constant M̃ ≥ α

(

1 + ‖x0‖
)

eαθ that if a closed ball B(x0, M̃θ) ⊂ W , then the
magnitude of the value function of the corresponding time-optimal problem with
lifeline T (x0) at the point x0 is also equal to θ.

Moreover, an opposite theorem also holds (since the value function of a time-
optimal problem with lifeline is always not less than the value function of the corre-
sponding classic time-optimal problem):
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Fig. 2 Illustration
to Theorem 3

Theorem 3 Assume that Condition C.1 holds. Let the function T (x0) of a time-
optimal problem with lifeline at the point x0 is equal to θ. Then there exists such
a constant M ≥ α

(

1 + ‖x0‖
)

eαθ that if a closed ball B(x0, Mθ) ⊂ W (see Fig. 2),
then the magnitude of the value function of the classic time-optimal problem T̃ (x0)
at the point x0 is equal to θ.

6 Numerical Examples

The numerical procedure described in Sects. 3 and 4 is constructive except the fact
that the set G is not restricted to be bounded. If the set G is unbounded, then the
gridLG covering it is infinite and cannot be represented in computer. However, in the
opposite case, if the set G is bounded, then the straightforward computer realization
of the proposed procedure is possible.

For the given time step h and space step k, the computer procedure starts with the
initial vector W0, which consists only of 0 and 1: if a node belongs to the set G , then
the magnitude at this node is equal to 1, and if the node belongs to the setT , then the
magnitude is equal to 0. The computer procedure iteratively recomputes magnitudes
at the nodes of the grid LG by the consequent application of the operator F to the
initial vector. The procedure stops if the desired number of iterations is achieved.

We have an own cross-platform realization of this numerical methodwritten using
the environment .NetCore 3.0 and language C# of version 6.0 or later. A single -
threaded program was written and then, by means of the capabilities of C#, it was
made multi-threaded in order to compute faster on multi-core processors.

The best probation for the program would be comparison of some results com-
puted by it with some value functions obtained theoretically. However, time-optimal
games are extremely hard to solve analytically, so, nowadays, there is no non-trivial
problems solved completely. The collection of problems that could be solved ana-
lytically includes problems with the simple motion dynamics and problems with
one-type objects, which can be reduced to control problems. Problems of these types
were used to debug the program and optimize its performance. But for other prob-
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lems, we can compare our results only with the numerical ones obtained by other
authors. Below, in several subsections, such examples are shown.

6.1 Homicidal Chauffeur Game

In the homicidal chauffeur game [20], a pursuing object, which represents a car with
a bounded turn radius, tries to catch up an evading one with dynamics of simple
motions, which is treated as a pedestrian.

The original dynamics describing separately both the car and the pedestrian are

ẋ p = w1 cosψ,

ẏp = w1 sinψ,

ψ̇ = w1

R
a,

ẋe = b1,
ẏe = b2.

Here, (x p, yp) and (xe, ye) are the geometric positions of the pursuer and the evader in
the plane; ψ is the course angle of the car’s velocity; w1 is the magnitude of the linear
velocity of the car; the value R/w1 describes the minimal turn radius of the car. The
control a ∈ [−1,+1] of the pursuer shows how sharply the car turns: the value a =
−1 corresponds to the maximally sharp right turn, the value a = +1 corresponds to
the maximally sharp left turn, and a = 0 corresponds to the instantaneous rectilinear
motion. The control (b1, b2) of the pedestrian obeys the constraint

∥
∥(b1, b2)

∥
∥ ≤ w2.

The terminal set can be chosen in different ways reflecting one or another model.
A strong disadvantage of this representation of the dynamics is that it has a quite

high dimension, namely, 5. However, it permits a reduction of the dimension of
the phase vector in the following way. Superpose the origin and the position of the
pursuer. Direct the ordinate axis along the current vector of the pursuer’s velocity.
So, the new state position (x, y) of the system is two-dimensional and its dynamics
are the following:

ẋ = −w1

R
ya + w2 sin b,

ẏ = w1

R
xa − w1 + w2 cos b.

Here, b ∈ [−π,π] is a newly introduced control of the evader.
Two following examples have been taken from work [27]. It is necessary to note

that the value function is discontinuous in these examples, so, formally the algorithm
is not meant to solve problems of this type. However, as one can see, there is good
coincidence of results obtained byus and the other authors.Of course, the coincidence
is considered in the areaswhere the lifeline does not affect the behavior of the players.

The computations have been performed on a computer with the CPU Intel i7 of
the 8th generation, which has 6 kernels with HyperThreading. The volume of RAM
is 16GB (however, it is not critical, since in the examples shown below, the program
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takes less than 1Gb for keeping the grid information). The three-dimensional graphs
of the value function have been reconstructed from the grid data by means of an
algorithm suggested by the authors. Visualization of these graphs was made by a
free system MeshLab.

6.1.1 Homicidal Chauffeur Game, Example 1

For the first example, the following parameters have been taken: w1 = 3, w2 = 1,
R = 3. The terminal set T is a circle with the center at the origin and the radius
equal to 1.0. The setW = [−20, 20] × [−10, 20]. The time step h = 0.1, the spatial
step k = 0.1. The number of iterations equals 150. The total time of computation
was about 2.5 h.

A three-dimensional view of the value function graph is given in Fig. 3. It is
restricted to a disk with the center at the point (0, 5) and the radius equal to 15. The
magenta-purple area corresponds to the terminal set and small magnitudes of the
value function, the yellow color marks places with large times to reach the terminal
set. In Fig. 4, one can see contour lines of the value function from 0 to 15 with the
step 0.2. The black thick “lines” correspond to the barriers where the value function
is discontinuous. This figure and other figures with contour lines have been prepared
by means of the system GNU Plot, whose algorithms are oriented to continuous
functions, so, near the discontinuities, the picture of contours can be inaccurately
restored.

Figure 5 again shows level sets of the value function, not by contours, but by a
color gradient filling, which corresponds to the colors in Fig. 3. The red areas stand
for the infinite magnitude of the value function, which have been cut off in Fig. 3.
These areas appear just due to presence of the lifeline: trajectories leading the system
to the terminal set from these areas leave the setW . Also, near the terminal set, one

Fig. 3 Homicidal chauffeur,
Example 1, a
three-dimensional view of
the value function graph

x

y

v(x,y)
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Fig. 4 Homicidal chauffeur,
Example 1, contour lines of
the value function

Fig. 5 Homicidal chauffeur,
Example 1, the area of the
guaranteed coincidence

can see a black spot, which marks the area where the value function of the Homicidal
chauffeur game with lifeline coincides with the classic one by Theorem 3. The area
is not too large, because the theorem considers all motions of the system including
“silly” ones, which go not to the terminal set, but to the lifeline.

6.1.2 Homicidal Chauffeur Game, Example 2

This example uses the same dynamics with the parameters w1 = 2, w2 = 0.6, R =
0.2. The terminal setT is a circle with the center at the point (0.2, 0.3) and the radius
is equal to 0.015. The set W = [−1.5, 1.5] × [−1, 1.5]. The time step h = 0.001,
the spatial step k = 0.005. The number of iterations equals 200. The total time of
computation was 7 h and 51min. A three-dimensional view of the value function
graph is given in Fig. 6. It is restricted to a disk with the center at the point (0, 0.25)
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Fig. 6 Homicidal chauffeur,
Example 2, a
three-dimensional view of
the value function graph

x

y

v(x,y)

Fig. 7 Homicidal chauffeur,
Example 2, contour lines of
the value function

and the radius equal to 1.25. The magenta-purple area corresponds to the terminal
set and small magnitudes of the value function, the yellow color marks places with
large times to reach the terminal set. In Fig. 7, one can see contour lines of the value
function from 0 to 1.25 with the step 0.015. The black thick “lines” corresponds to
the barriers where the value function is discontinuous. In Fig. 8, a black spot marks
the area where the value function of the Homicidal chauffeur game with lifeline
certainly coincides with the classic one.
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Fig. 8 Homicidal chauffeur,
Example 2, the area of the
guaranteed coincidence

6.2 Dubins’ Car

The (reduced) two-dimensional dynamics of this classic model system are the fol-
lowing:

ẋ = −ya, ẏ = xa − 1.

Here, a ∈ [−1, 1]. The time step h = 0.05, the spatial discretization step k = 0.01.
The target setT = {

(x, y) ∈ R
2 : max{|x |, |y|} ≤ 0.1

}

. The setW is a square with
the center at the origin and sides of length 6. The number of iterations is 150.Actually,
the Dubins’ car is an optimal control problem, however, we consider this problem
as a differential game with the fictitious second player, which does not affect the
dynamics and has its control constrained by a one-pointed set coinciding with the
origin. The total time of computation was 13min.

A three-dimensional view of the value function graph is given in Fig. 9. The
magenta-purple area corresponds to the terminal set and small magnitudes of the
value function, the yellow and orange colors mark places with large times to reach
the terminal set. In Fig. 10, one can see contour lines of the value function from 0
to 7 with the step 0.01. The black thick “lines” corresponds to the barriers where
the value function is discontinuous. In Fig. 11, a black spot marks the area where
the value function of Dubins’ car problem with lifeline certainly coincides with the
classic one.

Comparison of these results was made with the ones in paper [16] where an
analytical study of reachable sets for this problem is set forth. That work studies
reachable setsat instant, or in otherwords a problemwith afixed termination instant is
considered. Nevertheless, for control problems, situations at instant and upto instant
are connected very tightly (in contrast to differential games). Thus, we compare
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Fig. 9 Dubins’ car, a
three-dimensional view of
the value function graph

x

y

v(x,y)

Fig. 10 Dubins’ car, contour
lines of the value function
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Fig. 11 Dubins’ car, the
area of the guaranteed
coincidence

boundaries of the level sets of the value function for a time-optimal problem and the
front parts of the boundaries of the reachable sets at instant. The coincidence seems
to be good enough.

6.3 Material Point with Shifted Target

Dynamics of the system are the following:

ẋ = y, ẏ = a,

where a ∈ [−1, 1]. The target setT is a squarewith the center at (0, 1) and sideswith
length of 0.4. The set W is a square, the length of sides is equal to 8. The number
of iterations is 150. The time step h = 0.05, the spatial step k = 0.01. A three-
dimensional view of the value function graph is given in Fig. 12. Themagenta-purple
area corresponds to the terminal set and small magnitudes of the value function, the
yellow and orange colors mark places with large times to reach the terminal set.
In Fig. 13, one can see contour lines of the value function from 0 to 9 with the
step 0.01. The black thick “lines” corresponds to the barriers where the value function
is discontinuous. In Fig. 14, a black spot marks the area where the value function of
the material point problem with lifeline certainly coincides with the classic one.
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Fig. 12 Material point with
shifted target, a
three-dimensional view of
the value function graph

y x

v(x,y)

Fig. 13 Material point with
shifted target, contour lines
of the value function

This control problem is classic and well studied. The boundary of the value func-
tion level sets can be obtained by direct integration of trajectories of the system,
which can be easily performed due to linearity of the dynamics. There is a good
coincidence of theoretical and numerical results.
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Fig. 14 Material point with
shifted target, the area of the
guaranteed coincidence

7 Conclusion

The paper discusses proposed numerical method, which constructs the value function
of a time-optimal differential game with lifeline as a generalized (viscosity) solution
of the corresponding boundary value problem forHJE. Convergence of thismethod is
proved. Previously, authors have proved existence of the generalized solution and its
coincidence with the value function of the corresponding time-optimal problem with
lifeline under strong conditions (11) of dynamical advantage of each player on the
boundary of the corresponding set. It is known that simultaneous accomplishment of
these two inequalities results in continuity of the value function. The convergence of
the numerical method is proved under the same assumptions. Further, it is planned to
prove existence of the generalized solution and its coincidencewith the value function
under some weaker assumptions. Also, it would be useful to prove convergence of
the numerical method to the discontinuous value function of time-optimal problem
with lifeline.
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