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The paper considers a zero-sum linear differential game of attacker–
defender–target type in the case when all three objects move in the
straight line. The attacker tries to be out the capture radius of the de-
fender at some given instant and to capture the target inside its own
capture radius at some other later instant. The authors applying nu-
merical algorithms investigate the structure of solvability sets of such a
game for some variants of the objects’ dynamics.

I. Problem Formulation

Let us consider a situation of a space intercept with three objects: the attacker A, the
defender D, and the target T (see Fig. 1). Usual assumptions are supposed to be true:

• vectors (VA)nom, (VD)nom, and (VT )nom of objects’ nominal velocities as well as the
vectors of actual velocities during motion belong to one plane;
• initial lines-of-sight attacker–defender and attacker–target are almost parallel to the

objects’ velocities (angles (χA)nom, (χD)nom, and (χT )nom are close to 0◦ or 180◦);
• the objects’ can maneuver applying lateral accelerations orthogonal to their ve-

locities; but the accelerations are relatively small, thus in general the longitudinal
magnitudes of velocities stay almost the same during the entire process.

Figure 1. Scheme of a space intercept, planar engagement

All these assumptions allow one to linearize motions along the nominal trajectories.
After linearization, the longitudinal motions (along the axis y) become uniform and only
define the instants of nominal rendezvous of attacker with defender and target. Neglecting
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the longitudinal motions, one can consider only lateral one-dimensional motions (along
the axis z) of the objects, which are described by linear dynamics:

żσ = Aσzσ +Bσuσ, t ≥ t0, zσ ∈ Rnσ , uσ ∈ Pσ ⊂ Rpσ , σ ∈ {A,D, T}, (1)

Here, zA, zD, and zT are phase vectors of the attacker, defender, and target, respectively.
The objects’ controls uA, uD, uT are constrained by convex compact sets PA, PD, PT
in their own spaces. The matrices AA, AD, and AT are square; BA, BD, and BT are,
generally speaking, rectangular matrices; if some object has a scalar control, then the
corresponding matrix is a column.

Denote by zA, zD, and zT the first components of the vectors zA, zD, and zT . Assume
that they are the lateral geometric coordinates of the objects.

Fix two instants tD and tT that are the instants of the nominal rendezvous of attacker
with defender and target. Naturally assume tT > tD. The interest of the attacker is not
to be intercepted by the defender at the instant tD and to intercept the target at the
instant tT . Denoting by dD the capture radius of the defender and by dT the capture
radius of the attacker (the radius, within which the target can be captured), we can
formally define the objective of the attacker:∣∣zA(tD)− zD(tD)

∣∣ ≥ dD,
∣∣zA(tT )− zT (tT )

∣∣ ≤ dT . (2)

Consider the following zero-sum differential game (called the ADT game or ADT
problem): the first player, the attacker, using the control uA tries to guide system (1) to
target set (2); the second player that joined the defender and the target, tries to hinder
this by its controls uD and uT . We assume that during the game both players know exact
values of all phase coordinates. It is necessary to construct the solvability set of the game,
that is the set, wherefrom the first player guarantees achievement of its objective.

The considered problem arises when studying a pursuit in upper atmosphere layers.
The scheme of the pursuit is given in Fig. 1 and is taken from works by J. Shinar.

Originally, problem of this type have been outlined in the famous book [1] by R. Isaacs.
In the formulation by R. Isaacs, the target is an immobile set (from other point of view,
this game was named a game with a lifeline). But J. Shinar is one of the first authors
constructively explored problems of ADT type (see, for example, [2]). Publications on
ADT problems are various. Let us mention some of them. Isaacs’ formulation but with a
attacker–defender capture in a neighborhood of the defender (instead of exact coincidence
of positions) is considered in [3]. ADT type games with many attackers and/or defenders
are considered, in particular, by I. Rusnak in [4,5]. Work [6] by the same author considers
an ADT game without constraints on the objects’ controls, but with an integro-terminal
payoff (the integral part of the payoff contains a penalty for large valued controls). In [7], a
situation with attacker and defender with simple motion dynamics and passive defenders
in the plane is studied: there are moving obstacles, which cannot be passed through
by the attacker. The obstacle motion law is known. The authors suggest a numerical
algorithm for constructing solvability sets for games of this type. Work [8] considers an
ADT problem with objects having simple motion dynamics in the plane. In the paper,
the authors suggest a suboptimal solution of the problem.

II. Zero-Effort Miss Coordinates

Consider new coordinates x1 and x2 that are the values of relative coordinates zA−zD
and zA− zT , forecasted to the corresponding instants tD and tT , respectively, under zero
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players controls:

x1(t) = X1
A(tD, t)zA(t)−X1

D(tD, t)zD(t), x2(t) = X1
A(tT , t)zA(t)−X1

T (tT , t)zT (t). (3)

Here, X1
σ(t, θ), σ ∈ {A,D, T}, are the first rows of the fundamental Cauchy matri-

ces Xσ(t, θ) that corresponds to linear differential equations żσ = Aσzσ. Often, the vari-
ables x1, x2 are named zero-effort miss coordinates because they are the forecast values
of the corresponding misses at the corresponding instants under zero players’ controls.

Differentiating the values xi(t) by t, we obtain the dynamics in the new coordinates:

ẋ1 = X1
A(tD, t)BAuA −X1

D(tD, t)BDuD,

ẋ2 = X1
A(tT , t)BAuA −X1

T (tT , t)BTuT ,

t ∈ [t0, tT ], uA ∈ PA, uT ∈ PT , uD ∈ PD,∣∣x1(tD)
∣∣ ≥ dD,

∣∣x2(tT )
∣∣ ≤ dT .

(4)

From results of the differential game theory, it follows (see, for instance, [9–11])
that the differential game (4) is equivalent to the differential game with dynamics (1)
and target set (2). The equivalence means that the first player can successfully finish
game (1), (2) from some initial position

(
t, zA(t), zD(t), zT (t)

)
iff the first player can

successfully finish game (4) from the position
(
t, x1(t), x2(t)

)
, where x1(t) and x2(t) are

computed by formula (3). Computations with dynamics (4) are more convenient since
the dimension of the phase vector x = (x1, x2)

> equals two and the phase vector x is
absent in the right-hand part of system (4).

III. Evolution of Solvability Set

At the instant tT the inequality
∣∣x2(tT )

∣∣ ≤ dT (see (4)) defines an infinite strip along
the axis x1 — Fig. 2a. Further in the backward time before the instant tD, the strip
changes its width according the dynamics of the variable x2. Since the strip is horizontally

a)

x2

x1

|x2| ≤ dT t = tT

b)

x2

x1

t = tD + 0

c)

x2

x1
|x1| ≥ dD t = tD − 0

Figure 2. Backward evolution of the solvability set: a) at the instant tT ; b) before the
instant tD; c) after the instant tD
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infinite, the dynamics of the variable x1 does not matter. If the target is quite “stronger”
than the attacker, the width of the strip can become zero and the strip can vanish. In
this situation, the successful capture is impossible.

If the target is not stronger too much, then before the instant tD, we have a strip with
some width — Fig. 2b; it can be wider or narrower than the initial strip depending on
the relation of dynamic capabilities of the target and attacker. At the instant tD, there
is the inequality

∣∣x1(tD)
∣∣ ≥ dD, that cuts off a part of the strip near the origin — Fig. 2c.

After this instant (in the backward time), the solvability set becomes disconnected, and
just this fact makes the problem interesting for a mathematical investigation. There
are a number of scenarios of further solvability set evolution that depends on relation of
dynamics capabilities of the attacker and target, and of the attacker and defender.

If the target is now stronger than the attacker, then in the backward time the strip
can vanish. If the target is weaker than the attacker, but the defender is stronger, then
vertical size of the set increases in the backward time, and the central hole grows too.
Growing of the central hole means that simultaneous tracking the target and avoiding
the defender is difficult for the attacker and it should make some reserve in distance to
the defender. A similar effect can appear even if the attacker is slightly stronger than
the defender and the target individually: it has no enough capabilities to overcome both
opponents together.

If the attacker is stronger than the defender and target in total, then the central hole
can diminish. But with that, it changes its shape: the vertical parts of its boundary
obtain some slope zones. Therefore, in this case, if the vertical parts hit each other, the
boundary of the new simple connected section is not just a horizontal line, but has some
“teeth” directed inside the set.

If the attacker’s dynamic advantage varies in time, there can be a very complicated
evolution of time sections (t-sections) of the solvability set. In the next section, some
examples of solvability sets are given.

IV. Examples of Solvability Sets

A. Dynamics of Objects

In the following examples, all objects have dynamics of the first order link:

ż1 = z2, ż2 = z3, ż3 = (u− z3)/l, |u| ≤ µ.

Here, z1 is the coordinate of the object, z2 is its velocity, z3 is the acceleration. The
dynamics of z3 is the simplest model of inertial servomechanism that converts the com-
mand signal u to the acceleration. After setting some level of the command signal, the
acceleration reaches it in time approximately three time greater than the time constant l.

If two objects have such a dynamics, the pursuer with constants l1 and µ1, and the
evader with constants l2 and µ2, then we distinguish 4 variants depending on the values η
and εη, where η = µ1/µ2 and ε = l2/l1. The difference is how the solvability set in such
a one-to-one game (1 × 1 game) changes in time (Fig. 3). In the figure, the symbol τ
denotes the backward time.

In a 2×1 or 1×2 game, the solvability set evolution depends not only on the dynamic
advantage of the objects, but on the shape of the t-sections of the set too.
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Figure 3. Evolution of the solvability set in a one-to-one game in different situations of
the pursuer’s dynamic advantage. The symbol τ denotes the backward time

B. Example 1. Strong Attacker

Consider the following parameters of the game:

µA = 5.0, lA = 1.0, µD = 0.25, lD = 5.0, µT = 0.5, lT = 1.5,

tT = 3.0, tD = 2.0, dT = 1.0, dD = 1.0.

These parameters define the attacker to be stronger than both the defender and target.
Two views of the solvability set are given in Figs. 4 and 5. The set is assumed to

be infinite along the axis x1. During numerical computations, the infinite strip has been
replaced by a rectangle very long in this direction (sufficiently long to be sure that no
shape changes would reach its side edges). During visualization, the obtained body is cut
again at some far distance (but less far than the rectangle edges are).

In Fig. 4, one can see both results of the dynamic advantage of the attacker: in the
backward time the vertical size of the set increases, that is the target can be intercepted
from a quite wide area; also the central hole arising at the instant tD collapses. The
latter means that the attacker is so strong that can choose at what side it goes round the
defender even if at the initial instant they are quite close. Also, the “jags” are seen that
remain after disappearing the central hole.

Figure 4. Example 1: a 3D-view of the solv-
ability set

Figure 5. Example 1: a look along the axis x2

Empty strips denote places where the solvability set t-sections change connectivity:
at first (in the backward time) such a strip is at the instant tD when the t-section become
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disconnected; the second strip is at the instant when the central hole disappears and the
t-sections become connected again.

In Fig. 5, one can see that the central hole during its evolution in the backward time
obtains slope sides such that they overlaps when seeing along the axis x2.

C. Example 2. Pass around Pillar

Consider the following parameters of the game:

µA = 5.0, lA = 1.0, µD = 0.0, lD = 5.0, µT = 5.0, lT = 1.0,

tT = 3.0, tD = 2.0, dT = 1.0, dD = 1.0.

The peculiarity of this example is that the defender has zero control only. Since at the
beginning all velocities and accelerations supposed to be zero, than the defender is fixed
and cannot move at all. So, it is reasonable to call it “pillar”. Also, it is seen that the
attacker and target have the same dynamic capabilities, no one of them has dynamic
advantage.

Figure 6. Example 2: a general view of the
solvability set

Figure 7. Example 2: growth of the central
hole despite of absolute advantage of the at-
tacker over the defender

A general view of the solvability set is given in Fig. 6. Since dynamic capabilities
of the attacker and the target are the same, the set does not neither grow, nor contract
vertically. At the same time, since all capabilities of the attacker are spent for tracking the
target, it has no dynamics resources to maneuver well to go round the pillar. Therefore,
the zone grows where the target can control in such a way that the parrying control of
the attacker leads it to the pillar; that is the central hole grows in the backward time.
Figure 7 (which has a scale and an aspect differing from Fig. 6) shows that the hole
contracts a bit during a small period after the instant tD when it appears, but further
contraction is changed by expanding. In Fig. 7, again one can see slope side walls of the
central hole.

D. Example 3. Varying Advantage of Attacker

Now, let the parameters of the game be the following:

µA = 0.35, lA = 0.2, µD = 0.0, lD = 5.0, µT = 0.4, lT = 1.0,

tT = 17.0, tD = 16.5, dT = 2.0, dD = 0.82.

The defender is immovable again. But now the mutual dynamics advantage of the attacker
and target changes in time. Namely, this is the case shown in Fig. 3 at the right lower
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Figure 8. Example 3: the solvability set in the case of varying advantage of the attacker
over the target

subfigure: at the beginning of the backward time, the attacker is stronger than the target,
the solvability set grows in the vertical direction. Later in the backward time, the target
becomes stronger, and the solvability set starts to diminish vertically.

The solvability set is shown in Fig. 8. One can see a quite complicated geometric
structure. At first, there can bee seen how dynamic advantage passes from the attacker
to the target and how the solvability set height changes in time: growth, then contrac-
tion until vanishing. With that, the central hole that appears at the instant tD further
collapses leaving to “teeth” directed inside the set: one on the upper boundary of the set,
another on the lower one. The appearing of the hole and changing its sides can be seen
in Fig. 9a. In this figure, the solvability set is cut off at some instant less than tD (that
is after appearing the central hole), but later than the instant when the sides of the hole
meet each other.

Figure 9b shows the interior of the solvability set up to some instant after closing (in
the backward time) the central hole, but the attacker still has dynamics advantage: the
set still grows vertically. An interesting fact is that the inner teeth start to go aside; even
if at this time period the attacker is weaker and the set contracts vertically, the central
hole cannot reappear after joining these teeth because they cannot meet each other.

In Fig. 9c, a later (in the backward time) cut of the solvability set is given. At this
instant, the attacker is already weaker and the set is diminishing vertically. The teeth go
farer from the middle of the set.

Further in the backward time due to closing the upper and lower boundaries of the
set, the upper tooth meets the lower boundary, and the lower tooth meets the upper
boundary. At this instant, two holes appear, and the set disjoins into three disconnected
parts: two side infinite parts and a central bounded one (see Fig. 8). (Some dark spots
on the boundary of the set near this instant are because of some faults of the algorithm
that constructs the boundary of the solvability set on the basis of separate time sections
produced by the computational program.)

Proceedings of the 57th Israel Annual Conference
on Aerospace Sciences, Tel-Aviv & Haifa, Israel,
March 15-16, 2017

WeL2T3.3



a)

b)

c)

Figure 9. Example 3: evolution of the solvability set, view from the positive direction of
the backward time axis

Since the attacker is weaker than the target, the set continues to decrease its vertical
size and vanishes. But if the objects would have some oscillating dynamics, then the
contraction of the solvability set would change by expansion, and these two holes would
disappear and produce two new teeth each. That would lead to a much more complicated
shape of the t-sections of the solvability set.

E. Discussion of Results

The visual investigation of the obtained solvability sets shows that all difficulties of the
game solution are concentrated near the central hole appearing due to the presence of
the defender. If the system position is such that the state of equivalent game is far
from the hole and/or teeth of the solvability set, then we have a regular situation and
optimal controls of all objects are easy to define: the defender directs itself towards the
attacker, but cannot reach it; the attacker puts all its efforts to track the target ignoring
the defender.

But if the equivalent state is on the side edge of the hole or a tooth, then the behavior of
the attacker is more complicated: it should both track the target and simultaneously avoid
the defender. Evidently, there are some singular lines (in the sense of R. Isaacs) on the
side edges of the hole and teeth: dispersal or even equivocal. The attacker should control
very accurately in such a situation because its rough control can lead the trajectory of the
system outside the solvability set and, therefore, either the attacker will be intercepted
by the defender, or the target will not be captured by the attacker.

Also, an investigation of the singular lines would be interesting. The initial problem
is formulated with a target set, not a payoff function: therefore, optimal trajectories of
the system should be investigated in the surface of the solvability set boundary.
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V. Conclusion

The results given in the paper are obtained by the authors during the last year and are
new. Of course, they are connected with model mathematical formulations in the frame-
work of the theory of differential games. But these formulations appear in real problems
of space pursuit. The results show that the solvability sets in the attacker–defender–
target problem can rarely be constructed analytically. Therefore, to construct them one
needs effective numerical algorithms and programs including programs for visualization.
Solvability sets in quite typical situations can have a quite complicated structure. From
the authors’ point of view, its exotic peculiarities are important in actual engineering
practice.
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