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Abstract An algorithm for numerical constructing level sets of the value function is shortly described for one
class of linear differential games with fixed termination instant. Some model interception problems with one target
and two interceptors are considered; all objects are weak maneuverable.
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1 Introduction

The standard formulation of a zero-sum differential game (see, for example, [6–8]) includes definition of the
dynamics of the system and a scalar payoff function that describes the magnitude of the game result on certain
realizations of system motions. For a wide class of games, the best guaranteed results of the minimizing and
maximizing players in feedback controls are equal and called the value function.
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Construction of the value function is one of the main problems in solving zero-sum differential games. For
example, the function can be found in the form of a collection of its level sets. Let V (t, x) be a value of the value
function at the position (t, x), where t is the time and x is the phase vector. Then Wc = {

(t, x) : V (t, x) ≤ c
}

is
the level set of the value function that corresponds to a number c.

The set Wc coincides with the set of all initial positions, from which the player minimizing the payoff guarantees
himself the result not exceeding the value c. The problem of numerical construction of the sets Wc for different
values of c is very important. If we have a numerical instrument for constructing sets Wc, then, using computer
simulation, we can investigate dependence of properties of these sets on the value c and, moreover, on parameters
of the players’ dynamics.

In this paper, we present results of constructing the level sets of the value function for the following differential
game. Three inertial points (two pursuers P1 and P2 and one evader E) move along a straight line. At the instant T
given in advance, the distances between P1 and E and between P2 and E are measured. The payoff ϕ is the minimum
of these two distances. The first player that unites two pursuers P1 and P2 minimizes the value of the payoff. The
second player interpreted as the evader E tries to maximize it. The case of linear dynamics of each of the objects
is considered.

In spite of a model character, the problem under investigation has a significant applied meaning. It is connected
with an interception problem in the upper atmosphere layers when there are two pursuing objects and one evader.
The instant T fixed in advance corresponds to the termination time on the nominal objects’ trajectories. The linear
dynamics is stipulated by linearization of the nonlinear dynamics with respect to the nominal straight line motions
of the objects.

In the case of a one-to-one game (i.e., one pursuer–one evader), some versions of the linear dynamics (reasonable
in an engineering sense) were described in [1–3]. In these works, properties of level sets of the value function had been
investigated analytically. In the case with two pursuers, the analytical investigation becomes extremely complicated,
and numerical procedures are needed for constructing the level sets of the value function.

Introducing the difference geometric coordinates of positions of P1 and E and, also, of P2 and E , we obtain
that the payoff ϕ (or, in other words, the payoff function) depends only on two coordinates of the common phase
vector of the system at the instant T . This allows one to use standard techniques known in the control theory and
the differential game theory. Namely, we can consider an equivalent differential game with two-dimensional phase
variable x . The component x1 of this variable has the sense of the miss (with taking into account its sign) between P1

and E that is forecasted onto the instant T under zero controls of the players. Similarly, the component x2 is the
forecasted miss between P2 and E . Such phase coordinates are often called the zero effort miss coordinates [4].

At the instant T , we have V (T, x) = ϕ(x). To produce the set Wc = {
(t, x) : V (t, x) ≤ c

}
in the space (t, x),

we use the procedure of the backward construction of t-sections Wc(t) of this set. Assuming tk = T − (N − k)�,
k = 0, …, N , tN = T , t0 = t̄ , we divide the time interval [t̄, T ] of the game by the step � to the left from the
instant T . We suppose Wc(T ) = {

x : ϕ(x) ≤ c
}
. On the basis of the set Wc(T ), the set Wc(tN−1) is built and,

further, using Wc(tN−1), the set Wc(tN−2) is calculated, and so on. Actually, we implement a procedure of the
dynamic programming that takes into account peculiarities of the differential game theory. The limit set obtained
as � → 0 gives the ideal result, and a set corresponding to some finite � is an approximation.

Choosing an algorithm of passage from the section Wc(tk+1) to the section Wc(tk), we aim to a simple calculation
scheme that works well for objects with dynamics of general type including ones described in [1–3,5]. The main
operation is the algebraic sum (Minkowski sum) of two sets in the plane when one of the sets is a polygon and
the second one is a segment. Nowadays, such an operation is typical for the computational geometry in the plane.
Any segment in the plane is an image of an interval in the real axis. Thus, the situation can be considered in
the framework of interval analysis. In particular, we can construct upper and lower estimates of the Minkowski
sum.

The paper has the following structure. Sect. 2 is devoted to the problem formulation. In Sect. 3, the equiv-
alent differential game is described. Algorithm for numerical constructing the level sets of the value function
is given in Sect. 4. Several examples of constructing the level sets are given in Sect. 5. The paper ends by a
conclusion.



Level Sets of the Value Function in Differential Games 445

2 Problem Formulation

Let motions of the pursuers P1, P2 and the evader E be described in the vector form by the relations

żPi = APi zPi + BPi u Pi ,

u Pi = (u1
Pi

, u2
Pi

)�,
∣
∣u1

Pi

∣
∣ ≤ μ1

Pi
,

∣
∣u2

Pi

∣
∣ ≤ μ2

Pi
, zPi ∈ Rn Pi , i = 1, 2;

żE = AE zE + BE uE ,

|uE | ≤ μE , zE ∈ RnE . (2.1)

Here, AP1 , AP2 , and AE are square matrices of corresponding dimensions; BP1 , BP2 are matrices of sizes n P1 × 2
and n P2 ×2, and BE is a column matrix. The scalar controls u1

Pi
, u2

Pi
, i = 1, 2, and uE are restricted by the geometric

constraints.
Denote by zPi , zE the first components of the vectors zPi , i = 1, 2, and zE . These components represent the

geometric coordinates of the objects on the line.
Let us fix an instant T and introduce the payoff in the form

ϕ = min
{∣∣zP1(T ) − zE (T )

∣
∣,

∣
∣zP2(T ) − zE (T )

∣
∣}. (2.2)

Consider the following zero-sum differential game. The first player using the controls u1
Pi

, u2
Pi

, i = 1, 2, and
having the dynamics (2.1) minimizes the payoff (2.2). The second player applying the control uE maximizes the
payoff. We suppose that during the motion both players know the exact values of all phase coordinates of all objects.
It is necessary to suggest a method for computing level sets of the value function (i.e., the solvability sets for the
problem).

3 Two-Dimensional Equivalent Game

Denote by the symbol xi (t), i = 1, 2, the value of the difference zE − zPi forecasted from the current instant t and
current states zE (t), zPi (t) onto the termination instant T under the condition that the players’ zero controls are
applied in system (2.1). We have

xi (t) = X1
E (T, t)zE (t) − X1

Pi
(T, t)zPi (t), i = 1, 2. (3.1)

In this relation, the upper index 1 means the first rows of the Cauchy fundamental matrices X Pi (T, t), X E (T, t)
that correspond to the matrices APi , AE and are written for the termination instant T and the current instant t .

For a differential equation ż = A(t)z with a vector variable z, the fundamental Cauchy matrix X (T, t) [that
corresponds to the matrix A(t)] is defined (see, for example, [6–8]) as the solution of the matrix differential
equation ∂ X

∂t (T, t) = −X (T, t)A(t) with the boundary condition X (T, T ) = I . Here, I is a square unit matrix
of the corresponding dimension. Respectively, the first row X1(T, t) is the solution of the differential equa-
tion ∂ X1

∂t (T, t) = −X1(T, t)A(t) with the boundary condition X1(T, T ) = (1, 0, . . . , 0).
Since in our case, the matrices APi , AE do not depend on the time t , the matrices X Pi (T, t), X E (T, t) depend

only on the difference T − t . Underline that xi (T ) = zE (T ) − zPi (T ).
By differentiation of relations (3.1) on time t , we obtain

ẋi (t) = X1
E (T, t)BE uE − X1

Pi
(T, t)B1,Pi u

1
Pi

− X1
Pi

(T, t)B2,Pi u
2
Pi

. (3.2)

Here, the same as in (2.1):
∣
∣u1

Pi

∣
∣ ≤ μ1

Pi
,
∣
∣u2

Pi

∣
∣ ≤ μ2

Pi
, |uE | ≤ μE , t ≤ T , i = 1, 2. The symbols B1,Pi and B2,Pi

denote the first and second columns of the matrix BPi .
From results of the differential game theory (see, for example, [6–8]), it follows that the differential game with

dynamics (3.2) and the payoff

ϕ = min
{∣∣x1(T )

∣
∣,

∣
∣x2(T )

∣
∣} (3.3)



446 S. S. Kumkov et al.

is equivalent (in the sense of the value of the value function) to the differential game (2.1) with payoff (2.2). The
reformulation of dynamic system (2.1) into equation (3.2) simplifies numerical computations. Indeed, the dimension
of the phase vector x = (x1, x2)

� is only 2 and x does not enter to the right-hand side of equation (3.2).
Let the vector z is composed of the vectors zP1 , zP2 , zE . Consider a pair of positions (t, z) in game (2.1), (2.2)

and (t, x) in game (3.2), (3.3) such that relation (3.1) is true. Then the value functions of these games are equal in
these positions: V(t, z) = V (t, x).

When analyzing the form of system (3.2), note that the controls u1
Pi

, u2
Pi

affect the coordinate xi only. But at
the same time, the velocity of both coordinates x1, x2 depend on the control uE . With that, the first summands
are the same in the expressions for ẋ1(t) and ẋ2(t). Dynamics (3.2) is symmetric with respect to the origin of the
plane x1, x2. The bounds for the players’ controls and the level sets (the Lebesgue sets) of the payoff function
are also symmetric with respect to the zeros of their spaces. As a consequence, the t-sections Wc(t) of the level
sets Wc = {

(t, x) : V (t, x) ≤ c
}
, c ≥ 0, of the value function are symmetric with respect to the origin. During

numerical constructions of the t-sections Wc(t), the property of symmetry is not used, but we take it into account
when check the correctness of the result.

Suppose

D j,P1(t) = (
X1

P1
(T, t)B j,P1 , 0

)�
, D j,P2(t) = (

0, X1
P2

(T, t)B j,P2

)�
, j = 1, 2;

DE (t) = (
X1

E (T, t)BE , X1
E (T, t)BE

)�
.

Then system (3.2) has the following vector form:

ẋ(t) = DE (t)uE −
∑

j,i
D j,Pi (t)u

j
Pi

,

|uE | ≤ μE , |u j
Pi

| ≤ μ
j
Pi

, i, j = 1, 2. (3.4)

Here, all controls are scalar, and the matrix coefficients are column vectors. Under this, the vector DE (t) is directed
along the bisectrix of the first and third quadrants of the plane x1, x2; vectors D1,P1(t), D2,P1(t) are directed hori-
zontally, and vectors D1,P2(t), D2,P2(t) are directed vertically. Indices j and i at the sum symbol mean summation
on j = 1, 2 and i = 1, 2.

4 Numerical Construction of Level Sets

System (3.4) is a particular case of the linear system of the form

ẋ(t) = DE (t)uE + DP (t)u P , t ∈ [t̄, T ], x ∈ R2, uE ∈ UE , u P ∈ UP ,

where DE (t), DP (t) are matrices, uE , u P are vectors, UE , UP are convex compact sets in the corresponding spaces.
The instant T is fixed, and the continuous payoff function �

(
x(T )

)
is given. Its value is minimized by the first

player (the player P) and maximized by the second player (the player E).
We suppose that the time interval [t̄, T ] of the game is divided by the instants tN = T > tN−1 > . . . > tk+1 >

tk > . . . > t0 = t̄ into the semi-intervals [tk, tk+1) of the same length �.
Usually, two versions of approximate constructing the sections Wc(tk) of the level set Wc of the value function

are considered. Let Mc = {
x : �(x) ≤ c

}
be a level set of the payoff function.

(1) Now, we describe the idea of the first version. We assume W (1)
c (tN ) = Mc. Let the backward procedure be

performed up to the instant tk+1, and we have the set W (1)
c (tk+1). Having fixed the vector uE ∈ UE , we construct

the attainability set for the first player at the instant tk :

G(1)
(
tk; tk+1, W (1)

c (tk+1), uE
) =

⋃

u P (·)

tk∫

tk+1

DP (t)u P (t) dt +
tk∫

tk+1

DE (t)uE dt + W (1)
c (tk+1).
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Here, u P (·) means a measurable function given on [tk, tk+1] and such that u P (t) ∈ UP for any t . Further, we
perform the intersection

W (1)
c (tk) =

⋂

uE ∈UE

G(1)
(
tk; tk+1, W (1)

c (tk+1), uE
)
.

For the ideal section Wc(tk), we have the inclusion

Wc(tk) ⊂ W (1)
c (tk).

(2) In the second version of construction, we change the roles of the first and second players and instead of the
set Mc we use closure of its supplement cl M ′

c. We assume W (2)
c (tN ) = cl M ′

c. Fixing the vector u P ∈ UP , we take

G(2)
(
tk; tk+1, W (2)

c (tk+1), u P
) =

⋃

uE (·)

tk∫

tk+1

DE (t)uE (t) dt +
tk∫

tk+1

DP (t)u P dt + W (2)
c (tk+1).

Here, uE (·) means a measurable function given on [tk, tk+1] and such that uE (t) ∈ UE for any t . Further, we use
the intersection

W (2)
c (tk) =

⋂

u P∈UP

G(2)
(
tk; tk+1, W (2)

c (tk+1), u P
)
.

For the ideal section Wc(tk), we have the inclusion

cl
(
Wc(tk)

)′ ⊂ W (2)
c (tk).

So,

cl
(
W (2)

c (tk)
)′ ⊂ Wc(tk).

Both mentioned versions reflect the idea of estimation from above and below (in the sense of inclusion) of the
ideal object Wc(tk). In their concrete performing, we must approximate the terminal set Mc, the attainability sets
G(1) and G(2), and so on.

(3) Now, take into account the peculiarity of our dynamics (3.4). Suppose

dmax
j,Pi

(k) = max
{∣∣D j,Pi (t)

∣
∣ : t ∈ [tk, tk+1]

}
, dmin

E (k) = min
{∣∣DE (t)

∣
∣ : t ∈ [tk, tk+1]

}
.

Let Fj,Pi be a centered (with respect to the origin) segment placed on the axis xi of the half-length μ
j
Pi

. Suppose

Smax
j,Pi

(k) = dmax
j,Pi

(k) · Fj,Pi .

Let us denote by the symbol FE a segment of the half-length μE centered with respect to the origin and placed on
the bisectrix of the first and third quadrants. Suppose

Smin
E (k) = dmin

E (k) · FE .

Having fixed the vector sE ∈ Smin
E (k), consider the set

G(1)
(
tk; tk+1,W(1)

c (tk+1), sE
) = W(1)

c (tk+1) +
∑

i, j

Smax
j,Pi

(k) · � − sE · �. (4.1)

We perform the intersection

W(1)
c (tk) =

⋂

sE ∈Smin
E (k)

G(1)
(
tk; tk+1,W(1)

c (tk+1), sE
)
. (4.2)
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Formulas (4.1), (4.2) define the backward procedure for constructing the sets W(1)
c (tk) under the initial set

W(1)
c (tN ) = Mc. By using the supplementation operation, relation (4.2) can be rewritten in the form

W(1)
c (tk) =

( ⋃

sE ∈Smin
E (k)

G(1)
(
tk; tk+1,W(1)

c (tk+1), sE
)′
)′

=
((

W(1)
c (tk+1) +

∑

i, j

Smax
j,Pi

(k) · �
)′ + Smin

E (k) · �

)′
. (4.3)

Here, the symmetry (with respect to the origin) of the summand segments is taken into account. Thus, finding the
set W(1)

c (tk) is reduced to the algebraic sums.
We have

Wc(tk) ⊂ W (1)
c (tk) ⊂ W(1)

c (tk). (4.4)

(4) Introducing similarly the segments Smax
E (k), Smin

j,Pi
(k) and fixing a vector sP ∈ ∑

i, j Smin
j,Pi

(k), we obtain

G(2)
(
tk; tk+1,W(2)

c (tk+1), sP
) = W(2)

c (tk+1) + Smax
E · � − sP · �.

Let

W(2)
c (tk) =

⋂

sP∈∑
i, j Smin

j,Pi
(k)

G(2)
(
tk; tk+1,W(2)

c (tk+1), sP
)
.

We suppose that W(2)
c (tN ) = cl M ′

c.
Applying the supplementation operation, we have

W(2)
c (tk) =

( ⋃

sP∈∑
i, j Smin

j,Pi
(k)

G(2)
(
tk; tk+1,W(2)

c (tk+1), sP
)′
)′

=
((

W(2)
c (tk+1) + Smax

E (k) · �
)′ +

∑

i, j

Smin
j,Pi

(k) · �

)′
.

Since

cl
(
Wc(tk)

)′ ⊂ W (2)
c (tk) ⊂ W(2)

c (tk),

the following inclusion holds:

Wc(tk) ⊃ cl
(
W (2)

c (tk)
)′ ⊃ cl

(W(2)
c (tk)

)′
. (4.5)

Uniting relations (4.4) and (4.5), we get, as a result,

cl
(W(2)

c (tk)
)′ ⊂ cl

(
W (2)

c (tk)
)′ ⊂ Wc(tk) ⊂ W (1)

c (tk) ⊂ W(1)
c (tk). (4.6)

(5) Thus, for obtaining the outer and internal estimations of the set Wc(tk), we use the sets W(1)
c (tk) and

cl
(W(2)

c (tk)
)′, and each of these sets is a result of sequential application of algebraic sums. Under this, the summation

is performed with the segments symmetric with respect to the origin. Orientation of the segments does not change
in time. To get the set W(1)

c (tk), estimating from above the ideal set Wc(tk), we increase the segments of the first
player (the increasing is implemented by coefficients dmax

j,Pi
(k), j = 1, 2, i = 1, 2) and decrease the segment of

the second player [using the coefficient dmin
E (k)]. For obtaining the estimation cl

(W(2)
c (tk)

)′ from below of the set
Wc(tk), we, in contrast, increase the opportunities of the second player [by introducing the coefficient dmax

E (k)] and
decrease opportunities of the first player (using the coefficients dmin

j,Pi
(k), j = 1, 2, i = 1, 2).

According to the works of Pontryagin and his pupils [9–12], the results of summation described above are the
upper and lower alternating sums. The constructing of the alternating sums under fixed directions of segments of
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the first and second players brings together the effective backward constructions of differential game theory and
methods of interval analysis (see, for example, [13,14]).

(6) In practical computations, the step � for dividing the time axis is taken rather small in a way to make small
the Hausdorff distance between the sets W(1)

c (tk) and cl
(W(2)

c (tk)
)′. Of course, we talk about the Hausdorff distance

only in the case when the set cl
(W(2)

c (tk)
)′ is non-empty and W(1)

c (tk) = cl int W(1)
c (tk). The latter means that the

set W(1)
c (tk) has no interiorless “sprouts”. Here, the symbol int denotes the operation of taking interior of a set.

So, under a small step � of the backward procedure, instead of finding the accurate values of dmax
E (k), dmin

E (k),
dmax

j,Pi
(k), and dmin

j,Pi
(k), we usually take the “frozen” vectors D̃E (t), D̃ j,Pi (t), j = 1, 2, i = 1, 2, on each interval

[tk, tk+1) of the chosen time partition. For example, it is possible to take D̃E (t) = DE (tk), D̃ j,Pi (t) = D j,Pi (tk),
t ∈ [tk, tk+1). This corresponds to the following choice of the coefficients:

dE (k) = ∣
∣DE (tk)

∣
∣ ∈ [

dmin
E (k), dmax

E (k)
]
, d j,Pi (k) = ∣

∣D j,Pi (tk)
∣
∣ ∈ [

dmin
j,Pi

(k), dmax
j,Pi

(k)
]
.

In each time step of the backward procedure, computations of the set Wc(tk) analogous to the set W(1)
c (tk) in

formula (4.3) are made, but on the basis of the coefficients dE (k), d j,Pi (k) chosen in the shown way. We work
(in each algebraic sum) with the present boundary of the current set and correct it. The obtained set Wc(tk) obeys
inclusions

cl
(W(2)

c (tk)
)′ ⊂ Wc(tk) ⊂ W(1)

c (tk).

Due to (4.6), we get that for some small � the set Wc(tk) constructed numerically and the ideal set Wc(tk) are close.
An algorithm based on this choice of the coefficients dE (k), d j,Pi (k) is described in the works [15,16], where it is
used to investigate problems with two pursuers and one evader for dynamics of some particular type.

Theoretically, the set Mc is the cross with infinite strips parallel to the coordinate axes of the forecasted miss.
In the computational algorithm, we cut off the strips on a finite but sufficiently large distance from the coordinate
origin.

Some difficulties can occur at the instants of bifurcations when the set, which we construct in the backward
procedure, disjoins into two separate subsets that can degenerate or, conversely, join again under increasing the
backward time. In the problem under consideration, such instants of bifurcations are either absent, or their number
is not large. This depends on concrete parameters of the problem. At the instants of bifurcations, we change the
description of the constructed set. In the case of disjoining, we begin to process independently two polygons. In the
case of gathering, the boundary of their union is calculated, which is computed further.

(7) The entire algorithm, which corresponds to the item (6), can be described as follows:

Step 1. Read input data:

• the dimensions n Pi , nE ;
• the matrices APi , AE , BPi , BE of objects’ dynamics;

• the constraints μ
j
Pi

, μE for the players’ controls;
• the information on the time grid: t̄ , T , � (N = (T − t̄)/�);
• the information on the grid of values c of the payoff function: cmin, cmax, �c.

Step 2. For instant tk = T − (N − k)�, k = 0, …, N , integrate the first rows of the fundamental Cauchy matrices
(by means of the Euler method):

X1
Pi

(T, tN ) = X1
Pi

(T, T ) = I 1, X1
Pi

(T, tk) = X1
Pi

(T, tk+1) + X1
Pi

(T, tk+1)APi �,

X1
E (T, tN ) = X1

E (T, T ) = I 1, X1
E (T, tk) = X1

E (T, tk+1) + X1
E (T, tk+1)AE�.

Here, I 1 = (1, 0, . . . , 0) are row vectors of the corresponding sizes.

Step 3. Loop on the values of c from cmin to cmax with the step �c.

Step 4. Take

Wc(tN ) = Wc(T ) = Mc = {
(x1, x2) : |x1| ≤ c, |x2| ≤ M} ⋃{

(x1, x2) : |x2| ≤ c, |x1| ≤ M}
.



450 S. S. Kumkov et al.

Here, M is some large constant used for “cutting” the infinite “cross” of ideal level set of the payoff function.

Step 5. Loop on time instants with the index k that changes from N down to 0.

Step 6. Compute values, which define the pursuers’ and evader’s vectograms at the current instant tk :

d j,P1(k) = ∣
∣X1

P1
(T, tk)B j,P1

∣
∣, d j,P2(k) = ∣

∣X1
P2

(T, tk)B j,P2

∣
∣, j = 1, 2;

dE (k) = ∣
∣X1

E (T, tk)BE
∣
∣.

Step 7. Using geometric algorithms, compute the new time section according to formula

Wc(tk) =
((

Wc(tk+1) +
∑

i, j

� · d j,Pi (k) · Fj,Pi

)′ + � · dE (k) · FE

)′
.

As it was told above, the procedure for computing the algebraic sum “+” of a polygon and a segment deals with
the boundary contour of the polygon. During the computations, we control degeneration of the set Wc(tk), loss of
connectivity and joining of its separate components.

Step 8. If the new section Wc(tk) is degenerated (that is, it is empty), the loop on time breaks.

Step 9. End of the loop on time.

Step 10. The computed sections Wc(tk) are written to the output file.

Step 11. End of the loop on the values of c.
The geometric procedures used at step 7 are quite non-trivial, and their description is too large to be included to

this paper.

5 Results of Numerical Constructions

All computations, which results are given in this Section, have the time step � = 0.05.

5.1 Pursuers with Dual Control

Let each pursuer have the following dynamics:

ż1 = z2,

ż2 = z3 + dcuc + dt ut ,

ż3 = (
(1 − dc)uc + (1 − dt )ut − z3

)
/ lP .

This dynamics describes an interceptor missile with a canard control located at the head part of the missile
(the control uc) and a tail control located at the rear part of the missile (the control ut ). The coefficients dc (which is
positive) and dt (which is negative) have the absolute values showing how far from the center of mass of the missile
the controls are located. The value lP is the time constant showing the inertiality of the control servomechanisms.
There is a total control limit aP,max, which is divided between the canard and tail controls: |uc| ≤ α · aP,max,
|ut | ≤ β · aP,max; α, β ≥ 0, α + β = 1. One-to-one problems with the pursuer having such a dynamics are studied
in [2].

Consider an evader that has the dynamics

ż1 = z2,

ż2 = z3,

ż3 = (v − z3)/ lE , |v| ≤ aE,max. (5.1)
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Take the parameters of the game, which assume equal pursuers:

aP1,max = aP2,max = 1.0, lP1 = lP2 = 1/0.9, dc,1 = dc,2 = 0.5,

dt,1 = dt,2 = 0.5, α1 = α2 = 0.5, aE,max = 1.0, lE = 1.0, T = 12.

The level set W0 for this problem is shown in Fig. 1. This set corresponds to c = 0, that is, there is the exact
capture of the evader if the initial position of the system is inside the set. In this and following figures, t denotes the
time axis, and x1, x2 are the coordinates of system (3.2). In each figure, the point of view is chosen in such a way
that all patterns of evolution in time of the level sets are well distinguishable. In Fig. 1, one can see that the size
of the sections Wc(t) grows with the increasing of the backward time T − t . This defines the situation of strong
pursuers.

Now let us take the pursuers with different maximal values of the control. Namely,

aP1,max = 1.0, aP2,max = 0.9, lP1 = lP2 = 1/0.9, dc,1 = dc,2 = 0.5,

dt,1 = dt,2 = 0.5, α1 = α2 = 0.5, aE,max = 1.0, lE = 1.0, T = 15.

We show the level set W0 in Fig. 2. In this case of parameters, the pursuer P1 dynamics capabilities exceed the
ones of the evader E . The pursuer P2 is stronger than the evader only in some small initial period of the backward
time. When the backward time grows, it becomes weaker than the evader. Emphasize that change of the dynamic
advantage in time does not mean a change of the parameters of the game and occurs just under their fixed values
due to the certain fundamental Cauchy matrices that defines dynamics (3.2) of the game.

Fig. 1 The case of two
strong pursuers

Fig. 2 The case of one
strong pursuer and one
pursuer with varying
advantage
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Consider a situation, when both pursuers have the maximal control (acceleration) level less than the evader:

aP1,max = 0.8, aP2,max = 0.9, lP1 = lP2 = 1/0.9, dc,1 = dc,2 = 0.5,

dt,1 = dt,2 = 0.5, α1 = α2 = 0.5, aE,max = 1.0, lE = 1.0, T = 15.

The level set W0 for this variant is given in Fig. 3. Here, the set W0 disjoins into two separate sets at some
instant. These sets contract with the increasing of the backward time and finally degenerate (this instant is outside
the interval of the computations).

In the fourth example, let the dynamics of the evader be a one-controlled tail/canard scheme [1]:

ż1 = z2,

ż2 = z3 + dv,

ż3 = (
(1 − d)v − z3

)
/ lE , |v| ≤ aE,max.

The parameter d defines the position of the control: d > 0 corresponds to the canard scheme, d < 0 corresponds
to the tail scheme.

Game parameters are

aP1,max = aP2,max = 1.12, lP1 = lP2 = 1/0.18807, dc,1 = dc,2 = 0.521431,

dt,1 = dt,2 = −0.5, α1 = α2 = 0.9, aE,max = 1.0, dE = 0.305845, lE = 1.0, T = 15.

Again, we deal with equal pursuers. Fig. 4 contains a view of the set W0. Unlike the previous example, the parts,
to which the t-section W0(t) disjoins, start to grow and join back with the increasing of the backward time.

Concluding consideration of the situation with pursuers having dual control, let us show the result for pursuers
with different dynamics capabilities:

aP1,max = 1.12, aP2,max = 1.21, lP1 = lP2 = 1/0.18807, dc,1 = dc,2 = 0.605,

dt,1 = dt,2 = −0.5, α1 = 0.9, α2 = 0.8, aE,max = 1.0, dE = 0.157980, lE = 1.0, T = 25.

Fig. 3 The case of two
pursuers with varying
advantage; they are stronger
than the evader at the
beginning of the backward
time, then they become
weaker

Fig. 4 The case of equal
pursuers with varying
advantage: initially the
pursuers are stronger than
the evader, then they
become weaker, and finally
they are stronger again
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Fig. 5 The case of different
pursuers with varying
advantage: initially the
pursuers are stronger than
the evader, then they
become weaker, and finally
they are stronger again

The set W0 can be seen in Fig. 5.

5.2 Pursuers with Damped Oscillating Control Link

Consider a situation with the pursuers each having one scalar control only. It can be formally obtained by setting the
constraint for the corresponding control equal to zero: μ2

Pi
= 0. Let the evader have dynamics (5.1). Both pursuers

have the same dynamics that describes a servomechanism, which works out the command signal, as a damped
oscillator:

ż1 = z2,

ż2 = z3,

ż3 = z4,

ż4 = −ω2z3 − ζ z4 + u, |u| ≤ aP,max.

Here, ω is the fundamental frequency of the servomechanism, ζ is the damping factor. Such a dynamics of the
pursuer in a one-to-one game is considered in [3].

Let us take the following parameters of the game:

aP1,max = aP2,max = 0.3, ω1 = ω2 = 0.5, ζ1 = ζ2 = 0.0025,

aE,max = 1.3, lE = 1.0, T = 30.

In general, the pursuers are weaker than the evader. This leads to emptiness of all time sections Wc(t), t < T ,
of the set W0: it degenerates just at the termination instant. Thus, in Fig. 6, we show the set Wc that corresponds to
c = 1.6. One can see two places of narrow throats of the set.

Fig. 6 The case of equal
one-controlled pursuers;
three instants of disjoining
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6 Conclusion

Investigations of the sets of initial states, from which interception is guaranteed with the prescribed level of miss,
are very important in engineering practice. Such sets are often called the solvability ones. Numerical methods in
differential game theory (together with corresponding visualization tools) allow one to construct and investigate the
solvability sets in the form of the level sets of the value function.

The paper presents an algorithm for constructing the level sets. The algorithm is oriented to problems with
linear dynamics and fixed termination instant. It is assumed that the terminal payoff function is described by two
components of the phase vector. Under this, its level sets have the crosswise form that is characteristic for problems
with two pursuers and one evader.

Our experiments of constructing level sets of the value function (together with the results on one-to-one intercep-
tion problems known in the literature) show that in spite of various dynamics descriptions, the variety of qualitatively
different types of structures of the solvability sets is not too large. An accurate description of typical variants of
structure with distinguishing “exotic” examples can be a subject for further investigation.
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