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Abstract An antagonistic differential game is considered where motion occurs in a straight
line. Deviations between the first and second pursuers and the evader are computed at the in-
stants T1 and T2, respectively. The pursuers act in coordination. Their aim is to minimize the
resultant miss, which is equal to the minimum of the deviations happened at the instants T1

and T2. Numerical study of value function level sets (Lebesgue sets) for qualitatively differ-
ent cases is given. A method for constructing optimal feedback controls is suggested on the
basis of switching lines. The results of a numerical simulation are shown.

Keywords Pursuit-evasion differential game · Linear dynamics · Value function · Optimal
feedback control

1 Introduction and Problem Formulation

1. In the paper, a model differential game with two pursuers and one evader is studied. Three
inertial objects move in the straight line. The dynamics for pursuers P1 and P2 is

z̈P1 = aP1 , z̈P2 = aP2 ,

ȧP1 = (u1 − aP1)/ lP1 , ȧP2 = (u2 − aP2)/ lP2 ,

|u1| ≤ μ1, |u2| ≤ μ2,

aP1(t0) = 0, aP2(t0) = 0.

(1)
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Here, zP1 and zP2 are the geometric coordinates of the pursuers, aP1 and aP2 are their accel-
erations generated by the controls u1 and u2. The time constants lP1 and lP2 define how fast
the controls affect the systems.

The dynamics of the evader E is similar:

z̈E = aE, ȧE = (v − aE)/ lE, |v| ≤ ν, aE(t0) = 0. (2)

Let us fix some instants T1 and T2. At the instant T1, the miss of the first pursuer with
respect to the evader is computed, and at the instant T2, the miss of the second one is com-
puted:

rP1,E(T1) = ∣
∣zE(T1) − zP1,E(T1)

∣
∣, rP2,E(T2) = ∣

∣zE(T2) − zP2,E(T2)
∣
∣. (3)

Assume that the pursuers act in coordination. This means that we can join them into
one player P (which will be called the first player). This player governs the vector control
u = (u1, u2). The evader is regarded as the second player. The resultant miss is the following
value:

ϕ = min
{

rP1,E(T1), rP2,E(T2)
}

. (4)

At any instant t , both players know the exact values of all state coordinates zP1 , żP1 , aP1 ,
zP2 , żP2 , aP2 , zE , żE , aE . The vector composed of these components is denoted as z. The first
player choosing its feedback control minimizes the miss ϕ, the second one maximizes it.

Relations (1)–(4) define a standard antagonistic differential game. One needs to construct
the value function (t, z) �→ V(t, z) of this game and optimal (or quasioptimal) strategies of
the players.

2. Up to now, there are a lot of publications dealing with differential games where one
group of objects pursues another group; see, for example, the following works [1, 2, 5,
7, 8, 16, 20–23, 27]. The problem under consideration has two pursuers and one evader.
So, from the point of view of number of objects, it is the simplest one. On the other hand,
strict mathematical studies of problems “group-on-group” usually include quite strong as-
sumptions onto the dynamics of objects, dimension of the state vector, and conditions of
termination. Conversely, this paper considers the problem without any assumptions of these
types. Solution of the problem can be interesting for the group differential games.

3. Let us describe a practical problem, whose reasonable simplification gives the model
game (1)–(4). Suppose that two pursuing objects attack the evading one on collision courses.
They can be rockets or aircrafts in the horizontal plane. A nominal motion of the first pursuer
is chosen such that at the instant T1 the exact capture occurs. In the same way, a nominal
motion of the second pursuer is chosen (the capture is at the instant T2). But indeed, the
real positions of the objects differ from the nominal ones. Moreover, the evader using its
control can change its trajectory in comparison with the nominal one (but not principally,
without sharp turns). Correcting coordinated efforts of the pursuers are computed during
the process by the feedback method to minimize the result miss, which is the minimum of
absolute values of deviations at the instants T1 and T2 from the first and second pursuers,
respectively, to the evader.

The passage from the original non-linear dynamics to a dynamics, which is linearized
with respect to the nominal motions, gives [24, 26] the problem under consideration.
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2 Passage to Two-Dimensional Differential Game

At first, let us pass to relative geometric coordinates

y1 = zE − zP1 , y2 = zE − zP2 (5)

in dynamics (1), (2) and payoff function (4). After this, we have the following notation:

ÿ1 = aE − aP1 , ÿ2 = aE − aP2 ,

ȧP1 = (u1 − aP1)/ lP1 , ȧP2 = (u2 − aP2)/ lP2 ,

ȧE = (v − aE)/ lP1 , |u2| ≤ μ2,

|u1| ≤ μ1, |v| ≤ ν, ϕ = min
{∣
∣y1(T1)

∣
∣,

∣
∣y2(T2)

∣
∣
}

.

(6)

State variables of system (6) are y1, ẏ1, aP1 , y2, ẏ2, aP2 , aE ; u1 and u2 are controls of the
first player; v is the control of the second one. The payoff function ϕ depends on the coor-
dinate y1 at the instant T1 and on the coordinate y2 at the instant T2. From a general point of
view (existence of the value function, positional type of the optimal strategies), the differen-
tial game (6) is a particular case of a differential game with a positional functional [11].

A standard approach to study linear differential games with fixed terminal instant and
payoff function depending on some state coordinates at the terminal instant is to pass to
new state coordinates (see, for example, [12, 13]) that can be treated as values of the target
coordinates forecast to the terminal instant under zero controls. Often, these coordinates are
called the zero effort miss coordinates [24–26]. In our case, we have two instants T1 and T2,
but coordinates computed at these instants are independent; namely, at the instant T1, we
should take into account y1(T1) only, and at the instant T2, we use the value y2(T2). This fact
allows us to use the mentioned approach when solving the differential game (6). Thus, we
pass to new state coordinates x1 and x2 where x1(t) is the value of y1 forecast to the instant
T1 and x2(t) is the value of y2 forecast to the instant T2.

The forecast values are computed by the formula

xi = yi + ẏiτi − aPi
l2
Pi

h(τi/ lPi
) + aEl2

Eh(τi/ lE), i = 1,2. (7)

Here, xi , yi , ẏi , aPi
, and aE depend on t ; τi = Ti − t . Function h is described by the relation

h(α) = e−α + α − 1.

Emphasize that the values τ1 and τ2 are connected to each other by the relation τ1 − τ2 =
const = T1 − T2. It is very important that xi(Ti) = yi(Ti). Let X(t, z) be a two-dimensional
vector composed of the variables x1, x2 defined by formulas (5), (7).

The dynamics in the new coordinates x1, x2 is the following [15]:

ẋ1 = −lP1h(τ1/lP1)u1 + lEh(τ1/lE)v,

ẋ2 = −lP2h(τ2/lP2)u2 + lEh(τ2/lE)v,

|u1| ≤ μ1, |u2| ≤ μ2, |v| ≤ ν,

ϕ(x1(T1), x2(T2)) = min
{∣
∣x1(T1)

∣
∣,

∣
∣x2(T2)

∣
∣
}

.

(8)

The first player governs the controls u1, u2 and minimizes the payoff ϕ; the second one
has the control v and maximizes ϕ.
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Note that the control u1 (u2) affects only the horizontal (vertical) component ẋ1 (ẋ2) of
the velocity vector ẋ = (ẋ1, ẋ2)

T. When T1 = T2, the second summand in dynamics (8) is the
same for ẋ1 and ẋ2. Thus, the component of the velocity vector ẋ depending on the second
player control is directed at any instant t along the bisectrix of the first and third quadrants
of the plane x1, x2. When v = +ν, the angle between the axis x1 and the velocity vector
of the second player is 45◦; when v = −ν, the angle is 225◦. This property simplifies the
dynamics in comparison with the case T1 �= T2.

Let x = (x1, x2)
T and V (t, x) be the value of the value function of game (8) at the position

(t, x). From general results of the theory of differential games, it follows that

V(t, z) = V
(

t,X(t, z)
)

. (9)

Relation (9) allows to compute the value function of the original game (1)–(4) using the
value function for game (8). The transformation (t, z) �→ x = X(t, z) helps also to map the
feedback controls of the first and second players in game (8) found as functions depending
on (t, x) to corresponding controls in game (1)–(4), which are functions of (t, z).

For any c ≥ 0, a level set (a Lebesgue set)

Wc = {

(t, x) : V (t, x) ≤ c
}

of the value function in game (8) can be treated as the solvability set for the considered game
with the result not greater than c, that is, for a differential game with dynamics (8) and the
terminal set

Mc = {

(t, x) : t = T1, |x1| ≤ c
} ∪ {

(t, x) : t = T2, |x2| ≤ c
}

.

When c = 0, one has the situation of the exact capture. The exact capture means equality to
zero of, at least, one of x1(T1) and x2(T2).

Let

Wc(t) = {

x : (t, x) ∈ Wc

}

be the time section (t -section) of the set Wc at the instant t . Similarly, let Mc(t) for t = T1

and t = T2 be the t -section of the set Mc at the instant t .
Comparing dynamics capabilities of each of pursuers P1 and P2 and the evader E, one

can introduce the parameters [15, 26]

ηi = μi/ν, εi = lE/ lPi
, i = 1,2.

They define the shape of the solvability sets in the individual games P1 against E and P2

against E.
Namely, depending on values of ηi and ηiεi (which are not equal to 1 simultaneously),

there are 4 cases [26] of the solvability set evolution (see Fig. 1):

– expansion in the backward time (a strong pursuer);
– contraction in the backward time (a weak pursuer);
– expansion until some backward time instant and further contraction;
– contraction until some backward time instant and further expansion (if the solvability set

still has not broken).

Respectively, given combinations of pursuers’ capabilities in individual games and durations
T1, T2 (equal/different), there are significant number of variants for the problem with two
pursuers and one evader.
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Fig. 1 Variants of the solvability set evolution in an individual game

We use the following ideology for solving the problem. Choose the parameters ηi , εi , and
also the instants Ti , i = 1, 2; then, using some quite fine grid of values of c, compute level
sets Wc of the value function. After that, process them to obtain optimal (or quasioptimal)
controls of the first and second player close to the optimal ones and defined by switching
lines. Having the controls, one can compute trajectories of the system.

Up to now, different workgroups suggested many algorithms for numeric solution of
differential games of quite general type (see, for example, [4, 6, 17, 29]). Problem (8) is of
the second order in the phase variable and can be rewritten as

ẋ = D1(t)u1 + D2(t)u2 + E(t)v,

|u1| ≤ μ1, |u2| ≤ μ2, |v| ≤ ν.
(10)

Here, x = (x1, x2)
T; vectors D1(t), D2(t), and E(t) are defined as

D1(t) = (−lP1h
(

(T1 − t)/ lP1

)T
, 0

)

, D2(t) = (

0, −lP2h
(

(T2 − t)/ lP2

))T
,

E(t) = (

lEh
(

(T1 − t)/ lE
)

, lEh
(

(T2 − t)/ lE
))T

.

The control of the first player has two independent components u1 and u2. The vector D1(t)

(D2(t)) is directed along the horizontal (vertical) axis. The second player’s control v is
scalar. When T1 = T2, the angle between the axis x1 and the vector E(t) equals 45◦; when
T1 �= T2, the angle changes with time.

Due to specificity of our problem, we use special methods for constructing level sets of
the value function and optimal strategies. This allows us to make very fast computations of
many variants of the game.
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3 Maximal Stable Bridge: Control with Discrimination of Opponent. The Main Idea
of Numerical Construction

A level set Wc of the value function V is a maximal stable bridge (MSB), breaking on the
terminal set Mc [12, 13].

Let T1 = T2. Denote Tf = T1. Using the concept of MSB from [12, 13], we can say that
Wc is the set maximal by inclusion in the space (t ≤ Tf , x) such that Wc(Tf ) = Mc(Tf ) and
the stability property holds: for any position (t∗, x∗) ∈ Wc(t∗), t∗ < Tf , any instant t∗ > t∗,
t∗ ≤ Tf , any constant control v of the second player, which obeys the constraint |v| ≤ ν,
there is a measurable control t → (u1(t), u2(t))

T of the first player, t ∈ [t∗, t∗), |u1(t)| ≤ μ1,
|u2(t)| ≤ μ2, guiding system (8) from the state x∗ to the set Wc(t

∗) at the instant t∗.
The stability property assumes discrimination of the second player by the first one: the

choice of the first player’s control in the interval [t∗, t∗) is made after the second player
announces his control in this interval.

It is known (see [12, 13]) that any MSB is close. The set

W(2)
c (t) = cl

(

R2 \ Wc(t)
)

(here, the symbol cl denotes the operation of closure) is the time section of MSB W(2)
c for the

second player at the instant t . The bridge terminates at the instant Tf on the set M(2)
c (Tf ) =

cl(R2 \ Mc(Tf )). If the initial position of system (8) is in W(2)
c and if the first player is

discriminated by the second one, then the second player is able to guide the motion of the
system to the set M(2)

c (Tf ) at the instant Tf . Thus, ∂Wc = ∂W(2)
c . It is proved that for any

initial position (t0, x0) ∈ ∂Wc, the value c is the best guaranteed result for the first (second)
player in the class of feedback controls.

Presence of an idealized element (the discrimination of the opponent) allowed to create
effective numerical methods for backward construction of MSBs (see [30]). Linearity of the
dynamics and two-dimensionality of the state variable sufficiently simplify the algorithms.

The algorithm, which is suggested by the authors for constructing the approximating sets
W̃c(t), uses a time grid in the interval [0, Tf ]: tN = Tf , tN−1, tn−2, . . . . For any instant tk
from the taken grid, the set W̃c(tk) is built on the basis of the previous set W̃c(tk+1) and a
dynamics obtained from (8) by fixing its value at the instant tk+1. So dynamics (8), which
varies in the interval (tk, tk+1], is changed by a dynamics with simple motions [9]. The
set W̃c(tk) is regarded as a collection of all positions at the instant tk where from the first
player guarantees guiding the system to the set W̃c(tk+1) under “frozen” dynamics (8) and
discrimination of the second player. The corresponding formula has the form

W̃c(tk) = (

W̃c(tk+1) − (tk+1 − tk)D(tk+1) · P ) ∗−(tk+1 − tk)E (tk+1) · Q. (11)

Here, D(tk+1) is a matrix composed of columns D1(tk+1) and D2(tk+1) of system (10); the
sets P and Q are

P = {

(u1, u2) : |u1| ≤ μ1, |u2| ≤ μ2

}

, Q = {

v : |v| ≤ ν
}

.

The symbol
∗− denotes the geometric difference (Minkowski difference) of two sets:

A
∗− B =

⋂

b∈B

(A − b).

The boundary condition for the recursive computations (11) is assumed to be W̃c(tN ) =
Mc(Tf ).
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Due to symmetry of dynamics (8) and the set Wc(Tf ) with respect to the origin, one gets
that for any t ≤ Tf the time section Wc(t) is symmetric also.

If T1 �= T2, then there is no appreciable complication in constructing MSBs for the prob-
lem considered in this paper in comparison with the case T1 = T2. Indeed, let T1 > T2. Then
in the interval (T2, T1] in (8), we take into account only the dynamics of the variable x1

when building the bridge Wc backwardly from the instant T1. Thus, the terminal set at the
instant T1 is taken as Mc(T1) = {(x1, x2) : |x1| ≤ c}. When the constructions are made up to
the instant T2, we add the set Mc(T2), that is, we take

Wc(T2) = Wc(T2 + 0) ∪ {

(x1, x2) : |x2| ≤ c
}

,

and further constructions are made on the basis of this set.
So, our tool for finding a level set of the value function in game (8) corresponding to a

number c is the backward procedure for constructing a MSB with the terminal set Mc .
The solvability set with the index equal to c in the individual game P 1–E (P 2–E) is the

maximal stable bridge built in the coordinates t , x1 (t , x2) and terminating at the instant T1

(T2) on the set |x1| ≤ c (|x2| ≤ c). Its t -section, if it is non-empty, is a segment in the axis x1

(x2) symmetric with respect to the origin. In the plane x1, x2, this segment corresponds to
a vertical (horizontal) strip of the same width near the axis x2 (x1). It is evident that when
t ≤ T1 (t ≤ T2) such a strip is contained in the section Wc(t) of MSB Wc of game (8) with
the terminal set Mc .

4 Case of Strong Pursuers

4.1 Constructing Level Sets of the Value Function

In the case of two strong pursuers, the t -sections of MSBs in individual games P 1–E

and P 2–E grow with increasing the backward time. This gives that for any c ≥ 0 and
any t ≤ t̄ = min{T1, T2} the set Wc(t) includes a cross near the axes x1, x2, which expands
with decreasing t . Therefore, the set

W(2)
c (t) = cl

(

R2\Wc(t)
)

,

which is a t -section of MSB W(2)
c for the second player, can be regarded as consisting of

four subsets W(2),i
c (t), i = 1,4. Each of them does not intersect with others and is located

in one of four quadrants of the plane x1, x2. At the instant t̄ , the set W(2),i
c (t̄) is unbounded

convex set, namely, a right angle with sides parallel to the axes x1, x2. Going backward in
time from such a set, the second player tries to expand it, and the first one tries to contract.
For any t ≤ t̄ , the set W(2),i

c (t) is convex. The approximating set W̃ (2),i
c (tk) is computed by

the formula

W̃ (2),i
c (tk) = (

W̃ (2),i
c (tk+1) − (tk+1 − tk)E (tk+1) · Q) ∗−(tk+1 − tk)D(tk+1) · P.

The convexity simplifies [10, 14] the algorithm for constructing the geometric difference.
The error of numeric constructions of the sections W(2),i

c (t) is determined, in fact, almost
only by discretizations on t and by “freezing” dynamics in each interval of the discrete time.
Inside any interval, a game with simple motions is considered and these constructions are
exact.



Dyn Games Appl (2012) 2:228–257 235

Fig. 2 Two strong pursuers,
equal terminal instants: time
sections of the maximal stable
bridge W0

Having made independent computations in each quadrant (due to the central symme-
try, it is sufficient to make the constructions in the I and II quadrants only), one gets the
sets W(2),i

c (t), i = 1,4, and, therefore, the set

Wc(t) = cl

(

R2
∖ ⋃

i=1,4

W(2),i
c (t)

)

.

A proof of convergence of algorithm and its estimations for the convex case are given
in [3]. From results of this work, convergence of the method suggested here for constructing
level sets Wc of the value function follows for the case of strong pursuers.

Let us give results of constructing t -sections Wc(t) for the following values of the game
parameters:

μ1 = 2, μ2 = 3, ν = 1, lP1 = 1/2, lP2 = 1/0.857, lE = 1. (12)

Equal Terminal Instants Let T1 = T2 = 6. Figure 2 shows results of constructing the set W0

(that is, with c = 0). In the figure, one can see several time sections W0(t) of this set. The
bridge has a quite simple structure. At the initial instant τ = 0 of the backward time (when
t = 6), its section coincides with the target set, which is the union of two coordinate axes.
Further, at the instants t = 4, 2, 0, the cross thickens, and two triangles are added to it.
The widths of the vertical and horizontal parts of the cross correspond to sizes of MSBs in
the individual games with the first and second pursuers. These triangles are located in the
II and IV quadrants (where the signs of x1 and x2 are different, in other words, when the
evader is between the pursuers). They give the zone where the capture is possible only under
collective actions of both pursuers.

Time sections Wc(t) of other bridges Wc , c > 0, have a shape similar to W0(t). In Fig. 3,
one can see the sections Wc(t) at t = 2 (τ = 4) for a collection {Wc} corresponding to some
series of values of the parameter c. For other instants t , the structure of the sections Wc(t)

is similar.

Different Terminal Instants Let T1 = 7, T2 = 5. Results of constructing the set W0 are
given in Fig. 4. When t < 5, time sections W0(t) grow both horizontally and vertically; two
additional triangles appear, but in this case they are curvilinear.

Total structure of the sections Wc(t) at t = 2 is shown in Fig. 5.
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Fig. 3 Two strong pursuers,
equal terminal instants: level sets
of the value function, t = 2

Fig. 4 Two strong pursuers,
different terminal instants: time
sections of the maximal stable
bridge W0

Fig. 5 Two strong pursuers,
different terminal instants: level
sets of the value function, t = 2

In Fig. 6, the set W0 is shown in the three-dimensional space t , x1, x2.
The given results are typical for the case of strong pursuers. For other variants of the

parameters in the framework of this case, MSBs and the value function are similar. When
T1 = T2, the sets Wc(t) can be described analytically. This was done in paper [15]. Also,
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Fig. 6 Strong pursuers, different terminal instants: a three-dimensional view of the set W0

there the case T1 �= T2 was studied. But for it, only an upper approximations of the sets Wc(t)

was obtained.

4.2 Switching Lines in the Case of Strong Pursuers

Feedback Control of the First Player Analyzing the change of the value function along a
horizontal line in the plane x1, x2 for a fixed instant t , one can conclude that the minimum
of the function is reached in the segment of intersection of this line and the set W0(t). The
function is monotonic at both sides of the segment. For points at the right (at the left) from
the segment, the control u∗

1 = μ1 (u∗
1 = −μ1) directs the vector D1(t)u1 to the minimum.

Splitting the plane into horizontal lines and extracting for each line the segment of mini-
mum of the value function, one can gather these segments into a set in the plane and draw a
switching line through this set, which separates the plane into two parts at the instant t . At
the right from this switching line, we choose the control u∗

1 = μ1, and at the left the control
is u∗

1 = −μ1. On the switching line, the control u∗
1 can be arbitrary obeying the constraint

|u∗
1| ≤ μ1. The easiest way is to take the vertical axis x2 as the switching line.
In the same way, using the vector D2(t), we can conclude that the horizontal axis x1 can

be taken as the switching line for the control u2.
Thus,

u∗
i (t, x) =

⎧

⎪⎨

⎪⎩

μi, if xi > 0,

−μi, if xi < 0,

any ui ∈ [−μi,μi], if xi = 0.

(13)

Note that if T1 �= T2 then for i = 1 formula (13) is used in the interval [0, T1], and for i = 2
it is applied in the interval [0, T2].
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Fig. 7 Two strong pursuers,
equal terminal instants: switching
lines for the first player

Fig. 8 Two strong pursuers,
equal terminal instants: switching
lines for the second player, t = 0

The switching lines (the coordinate axes) at any t divide the plane x1, x2 into 4 cells. In
each of these cells, the control u∗ = (u∗

1, u
∗
2)

T of the first player is constant. The synthesis
of the first player’s control is the same for all time instants and is shown in Fig. 7. Arrows
denote the direction of the vectors Di (t)u

∗
i , i = 1,2.

Feedback Control of the Second Player For a fixed instant t , consider a split of the plane
x1, x2 into lines parallel to the vector E(t). Take the segments of local minimum and local
maximum of the value function on all lines. One can easily see that for any line (except
lines passing near the origin), there are two segments of local minimum and one of local
maximum located between them. The segments of minimum appear by intersection of the
line with the set W0(t). The segment of maximum for the case T1 = T2 coincides with the
rectilinear part of the boundary of some set Wc(t) and has slope angle equal to 45◦. If
T1 �= T2, then the segment of maximum degenerates to a point coinciding with the corner
point of a curvilinear triangle. For any point in the line outside all the segments, the control
v is chosen in such a way that the vector E(t)v is oriented to the direction of growth of
the value function. So, there are two parts of the line, where v∗ = ν, and two parts, where
v∗ = −ν.

For a fixed instant t , t ≤ min{T1, T2}, the switching lines for the second player comprise
of the coordinate axes and some line Π(t), which passes through the segments of local
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minimum (for simplicity, through middles of these segments) if T1 = T2, and through the
corner points of curvilinear triangles if T1 �= T2.

Inside each of 6 cells, into which the plane is separated by the switching lines of the
second player, the optimal control is taken certain: either v∗ = ν or v∗ = −ν. In each of
these switching lines, an arbitrary value v∗ ∈ [−ν, ν] can be taken.

If T1 �= T2, then for t > min{T1, T2} the switching line for the second player’s control is
just one corresponding coordinate axis.

The second player optimal synthesis for the case T1 = 7, T2 = 5 is shown in Fig. 8 for
t = 0. Arrows denote direction of the vectors E(t)v∗.

4.3 Generating Feedback Controls. Discrete Scheme of Control

Switching lines are built as a result of processing the boundary of the sets Wc(t). Some grid
of instants ts with the step Δ is introduced, where the t -sections Wcj

(ts) of the maximal
stable bridges Wcj

are constructed by the backward procedure. The values cj are also taken
in some grid with the step Δc. For any instant ts , approximating switching lines are stored
as polygonal lines in the memory of a computer.

Having a position x(ts) at the instant ts , it is possible to compute the controls u∗
1(ts , x(ts))

and u∗
2(ts, x(ts)) analyzing location of the point x(ts) with respect to the switching lines for

u1 and u2. The vectors D1(ts) and D2(ts) are used for this. The values of u∗
1 and u∗

2 are
defined by formula (13). Drawing a ray from the point x(ts) with the directing vector Di (ts),
one can decide whether it crosses a switching line corresponding to the index i. If it does
not, then u∗

i (ts , x(ts)) = −μi ; if it crosses, then u∗
i (ts , x(ts)) = μi .

The first player control chosen at the instant ts is kept until the instant ts+1 = ts + Δ.
At the position (ts+1, x(ts+1)), a new control value is chosen, etc. So, the feedback control
generated by the switching lines is used in a discrete control scheme [12, 13].

To construct v∗(ts , x(ts)), we use the vector E(ts). Compute how many times (even or
odd) a ray with the beginning at the point x(ts) and the directing vector E(ts) crosses
the second player switching lines. If the number of crosses is even (absence of crosses
means that the number equals zero and is even), then we take v∗(ts , x(ts)) = +ν; otherwise,
v∗(ts, x(ts)) = −ν. The chosen control is kept until the next instant ts+1. In the position
(ts+1, x(ts+1)), a new control is built, etc.

This synthesis for the first (second) player is optimal. The feedback control of the first
(second) player built on the basis of switching lines guarantees the limit of result as Δ → 0
and Δc → 0, which is not greater (not less) than V (t0, x0) for any initial position (t0, x0).
Moreover, the suggested players’ controls are stable with respect to small error of mea-
surements of the phase state and small inaccuracies of the numerical constructions of the
switching lines.

The property of stability near each certain switching line is stipulated by directions of
the arrows of corresponding controls on both sides of the line. If the arrows are directed to
the switching line, the stability with respect to the numerical and informational errors takes
place. From Fig. 8, one can see that the switching lines for the second player’s control v,
which coincide with the coordinate axes, do not possess this property: the arrows of the
vectors E (t)v∗ are directed from the switching lines. But in the considered case, these lines
are located inside the set W0(t) where the value function is constant and equal to 0. Thus,
errors of computing the control v within the set W0(t) are not important. So, there is the
stability near these lines, too.
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4.4 Justifying Optimality and Stability of Players’ Controls

Let the time step of the backward construction of the level sets Wc of the value function
(MSBs) be so small that we can ignore the inaccuracies of the constructions. Also, let the
step Δc of the collection {Wc} be quite small too. So, using the denotation V , we do not
distinguish the “ideal” value function and the one constructed numerically.

Let us prove the optimality of the first and second players’ controls suggested above and
their stability with respect to informational errors.

At first, we consider the case when T1 = T2. Denote Tf = T1.
Let ε ≥ 0 and the set

Mε = {

(x1, x2) : |x1| ≤ ε
} ∪ {

(x1, x2) : |x2| ≤ ε
}

be a cross of semiwidth equal to ε near the axes x1 and x2.
Note that the Lipschitz constant L(t) of the function x �→ V (t, x) for any t ≤ Tf equals 1.

This follows from a well-known statement [28, pp. 110–111] that the Lipschitz constant of
the value function on the phase variable in a game of type (10) with fixed terminal instant co-
incides with the Lipschitz constant of the terminal payoff function. In our case, the terminal
payoff function at the instant Tf is min{|x1|, |x2|}, and its Lipschitz constant is 1.

Denote by K the maximal magnitude of the absolute value of the velocity of system (10)
in the time interval [0, Tf ].

Optimality and Stability of the First Player’s Control Let the first player apply his strategy
in a discrete scheme of control with the time step Δ. Suppose that the first player errs in
computing the phase state of system (10) with the error not greater than ε ≥ 0. This means
that if the true position of system (10) at some instant t is x(t), then the measuring unit gives
to the player some position x(t) + ζ(t) where |ζ(t)| ≤ ε. Due to these errors, the first player
can choose incorrect values u∗

1 and u∗
2 if x(t) ∈ Mε . If x(t) /∈ Mε , then sign(xi(t)+ ζi(t)) =

signxi(t), i = 1, 2, and the choice is correct for any error of this type.
Taking into account the results of constructing level sets of the value function in the

case of strong pursuers, we can conclude that for any t ≤ Tf the function x �→ V (t, x)

has non-positive directional derivative along the vectors D1(t)u
∗
1(t, x) and D2(t)u

∗
2(t, x) at

any point x beyond the axes x1 and x2. Thus, if x(t) /∈ Mε for some time interval [t, t̄]
and constant controls u1 and u2 are chosen as u∗

1(x(t) + ζ(t)) and u∗
2(x(t) + ζ(t)), then

V (t̄, x(t̄)) ≤ V (t, x(t)) for any feasible open-loop control v(·) of the second player in this
interval. (We count this fact as evident.)

Consider some motion in the interval [t0, Tf ], t0 ∈ [0, Tf ].
If x(t) /∈ Mε for any t , then V (Tf , x(Tf )) ≤ V (t0, x(t0)).
Let x(t̂) ∈ Mε for some t̂ ∈ [t0, Tf ]. Denote by t̃ the maximum of such instants. Then in

the interval (t̃ , Tf ], the point x(t) is outside of the set Mε . Consider a time step [ts , ts + Δ)

of the discrete control scheme, where s is such that t̃ ∈ [ts , ts +Δ). For t ∈ (t̃ , Tf ], the chosen
control u(t) = (u1(t), u2(t))

T can differ from u∗ = (u∗
1, u

∗
2)

T in the interval (t̃ , ts + Δ) only.
This gives that

V
(

Tf , x(Tf )
) ≤ V

(

ts + Δ,x(ts + Δ)
)

.

Taking into account monotonic growth of the sets Wc(t) with decreasing t , we have

V
(

ts + Δ,x(ts + Δ)
) ≤ V

(

t̃ , x(ts + Δ)
)

.
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Using the Lipschitz constant L(t̃) = 1, we get

V
(

t̃ , x(ts + Δ)
) ≤ V

(

t̃ , x(t̃)
) + L(t̃) · Δ · K = V

(

t̃ , x(t̃)
) + Δ · K.

Since x(t̃) ∈ Mε then V (t̃, x(t̃)) ≤ ε. Thus,

V
(

Tf , x(Tf )
) ≤ ε + Δ · K.

Gathering the cases when the motion x(t) is outside Mε and when it hits the set Mε , we
obtain

V
(

Tf , x(Tf )
) ≤ max

{

V
(

t0, x(t0)
)

, ε + Δ · K}

. (14)

The following proposition is true:

Proposition 1 Let the first player apply his strategy u∗ in a discrete control scheme with
the time step Δ > 0 under errors of measurements bounded by a value ε ≥ 0. Then for any
initial position (t0, x(t0)), t0 ∈ [0, Tf ], and for any feasible realization v(·) of the second
player’s control, estimation (14) is held.

This statement characterizes the optimality of the strategy u∗ and its stability with respect
to small inaccuracies of measurements of the phase state of system (10).

Optimality and Stability of the Second Player’s Control Construct a strip of semiwidth r

along the direction of the vector E (t) near the switching line Π(t) (which is located in the I
and III quadrants). Denote the strip by Πr(t).

Fix a r ≥ 0 and choose ε ≥ 0 such that the closed ε-neighborhood of the line Π(t)

belongs to Πr(t) for any t ∈ [0, Tf ]. Such a limitation for ε is called consistency condition
of ε with r .

Let the second player get a measurement x(t) + ζ(t), where |ζ(t)| ≤ ε, instead of the
exact position x(t), t ∈ [t0, Tf ].

Assume that the motion x(t) in [t0, Tf ] does not hit the set Mε . Then it stays in the same
quadrant, and the informational error can affect the correctness of the choice of the control
only when the motions is inside the strip Πr(t) (if the motion reaches it). The function x �→
−V (t, x) is convex inside any quadrant. So, for any t ∈ [t0, Tf ], the estimation is true [18,
19]:

−V
(

t, x(t)
) ≤ −V

(

t0, x(t0)
) + Λ(t − t0, r,Δ),

Λ(t − t0, r,Δ) = 2
√

(2KνΔ + r)βν(t − t0) + 4KνΔ + r.

Here, β is the Lipschitz constant of the function t �→ E (t) in the interval [0, Tf ]. Since
V (t, x(t)) ≥ 0, we get

V
(

t, x(t)
) ≥ max

{

0,V
(

t0, x(t0)
) − Λ(t − t0, r,Δ)

}

, t ∈ [t0, Tf ]. (15)

(1) Let the initial position (t0, x(t0)) be such that

V
(

t0, x(t0)
) ≥ Λ(Tf , r,Δ) + ε.

Then x(t0) /∈ Mε and in the interval [t0, Tf ], due to (15), the motion x(t) does not go to the
set Mε . Thus,

V
(

Tf , x(Tf )
) ≥ V

(

t0, x(t0)
) − Λ(t − t0, r,Δ), t ∈ [t0, Tf ].
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(2) Let V (t0, x(t0)) < Λ(Tf , r,Δ) + ε. In this case, we write a trivial estimation
V (t, x(t)) ≥ 0.

Gathering the cases (1) and (2), we obtain the following estimation:

V
(

Tf , x(Tf )
) ≥ max

{

0,V
(

t0, x(t0)
) − Λ(Tf , r,Δ)

}

. (16)

The following proposition is true:

Proposition 2 Fix an arbitrary r ≥ 0. Suppose that some ε ≥ 0 obeys the consistency con-
dition with r .

Let the second player apply his strategy v∗ in a discrete control scheme with the time
step Δ > 0 under informational errors bounded by the value ε. Then for any initial posi-
tion (t0, x(t0)), t0 ∈ [0, Tf ], and any feasible realization u(·) of the first player’s control,
estimation (16) is held.

This statement characterizes the optimality of the strategy v∗ and its stability with respect
to small inaccuracies of measurements of the phase state of system (10).

Comparing the structure of Propositions 1 and 2, pay attention to the fact that in Proposi-
tion 1, the values ε, Δ and the initial position (t0, x(t0)) can be arbitrary. At the same time,
in Proposition 2, the values r , Δ and ε (which depends on r) are taken according to the
value V (t0, x(t0)) of the value function at the initial position to provide small inaccuracy Λ

and, therefore, non-triviality of estimation (16).
Now let T1 �= T2. Consider the case T1 > T2 (the other case is similar). The Lipschitz

constant L(t) of the function x �→ V (t, x) for any t ≤ T1 equals 1. Indeed, when t ∈ (T2, T1],
the value V (t, x) is defined by the payoff |x1(T1)|. Its Lipschitz constant is 1. Therefore,
L(t) = 1 if t ∈ (T2, T1]. When t ≤ T2, the value V (t, x) is computed as the value of the
value function in the game with fixed terminal instant T2 and payoff function min{V (T2 +
0, x), |x2|}. Since the Lipschitz constant of this payoff is 1, then L(t) = 1 when t ≤ T2.

Define the set Mε as a strip of semiwidth ε near the axis x2 for t ∈ (T2, T1] and as a cross
(as was done above) for t ≤ T2.

Let K be the maximal magnitude of the velocity of system (10) in the interval [0, T1],
and β be the Lipschitz constant of the function t �→ E (t) in the interval [0, T2].

In the case T1 > T2, statements analogous to Propositions 1 and 2 are true. The difference
is that in the interval (T2, T1] only the control u∗

1 of the first player works and the switching
line Π(t) for the second player disappears. The evaluations are similar to those in the proofs
of Propositions 1 and 2. At first, they are written for the interval [0, T2] and further made for
the interval [T2, T1].
4.5 Simulation Results

Let the pursuers P1, P2, and the evader E move in the plane. This plane is called the original
geometric space. At the initial instant t0, velocities of all objects are parallel to the horizontal
axis (Fig. 9) and sufficiently greater than the possible changes of the lateral velocity com-
ponents. Velocity of each object has a constant component parallel to the horizontal axis.
Magnitudes of these components are such that the rendezvous of the objects P1 and E hap-
pens at the instant T1, and the objects P2 and E encounter at the instant T2. The dynamics of
lateral motion is described by relations (1), (2); the resultant miss is given by formula (4).

Here and in the simulations below, the initial lateral velocities and accelerations are as-
sumed to be zero:

ż0
P1

= ż0
P2

= ż0
E = 0, a0

P1
= a0

P2
= a0

E = 0.
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Fig. 9 Schematic initial
positions of the pursuers and
evader

Fig. 10 Two strong pursuers,
equal termination instants:
trajectories in the original
geometric space

Fig. 11 Two strong pursuers,
different termination instants:
trajectories in the original
geometric space

In the following figures, the horizontal axis is denoted by the symbol d . So, the coor-
dinate d shows the longitudinal position of the objects. Controls of the objects affect the
vertical (lateral) coordinate.

In Fig. 10, one can see the trajectories of the objects for the case of strong pursuers and
equal terminal instants for the game parameters (12), t0 = 0, and T1 = T2 = 6. The pursuers
P1, P2, and the evader E act optimally. The trajectories drawn by solid lines correspond to
the following initial data:

z0
P1

= −40, z0
P2

= 25, z0
E = 0.

The dashed lines denote the trajectories for the initial positions

z0
P1

= −25, z0
P2

= 50, z0
E = 0.

In the first case, the evader is successfully captured (at the terminal instant, the positions
of both pursuers are the same as the position of the evader). In the second variant of ini-
tial positions, the evader escapes: at the terminal instant no one of the pursuers superposes
with the evader. In this case, one can see that the evader aims itself to the middle between
the terminal positions of the pursuers (this guarantees to him the maximum of the payoff
function ϕ).

Figure 11 shows the optimal trajectories for the initial positions z0
P1

= −50, z0
P2

= 25,
z0
E = 0 at the instant t0 = 0 and the terminal instants T1 = 7, T2 = 5. The symbol T1 (T2)

is put near the longitudinal positions d where the rendezvous of P1 and E (of P2 and E)
happens. To avoid misunderstanding of them as some coordinate marks, they are embraced
by frames. One can see that at the beginning the evader escapes from the second pursuer and
goes down, and after that, the evader’s control is changed to escape from the first pursuer
and the evader goes up.
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5 Case of Weak Pursuers

Since in the case of weak pursuers the t -sections of MSBs in individual games P 1–E

and P 2–E contract with growth of the backward time and become empty at some instant,
the set Wc(t) for any c ≥ 0 with decreasing of t loses infinite sizes along axes x1 and x2.
So, during backward constructions of the sets Wc(t), one cannot apply independent proce-
dures in four quadrants of the plane x1, x2 as it was made in the case of strong pursuers. To
compute the geometric difference in formula (11), one can use the relation

A
∗− B =

⋂

b∈B

(A − b) =
(

⋃

b∈B

(A − b)′
)′

=
(

⋃

b∈B

(

A′ − b
)
)′

= (

A′ − B
)′
.

Here, the prime symbol denotes the complement operation: A′ = R2\A. As a result, the
passage from the set W̃c(tk+1) to the set W̃c(tk) in the backward procedure is performed as a
number of application of algebraic sum operation (Minkowski sum) of a non-convex set and
a segment. The specificity of the plane is such that during approximation of a boundary of a
connected set by a polygonal line, this line can be locally considered either as convex, or as
concave. This property allows to create an efficient algorithm for constructing the algebraic
sum of a non-convex set and a segment.

During the numerical studies, it was discovered that the connected set Wc(t) with de-
creasing of t loses connectedness and disjoins into two separate parts. This can happen both
when T1 = T2, and when T1 �= T2. Loss of connectedness complexifies the solution of the
game and, in particular, constructing optimal strategies of players.

Take the parameters

μ1 = 0.9, μ2 = 0.8, ν = 1, lP1 = lP2 = 1/0.7, lE = 1.

Let us show results for the case of different terminal instants only: T1 = 9, T2 = 7.
Since in this variant the evader is more maneuverable than the pursuers, the first player

cannot guarantee the exact capture.
Fix some level of the miss, namely, |x1(T1)| ≤ 2.0, |x2(T2)| ≤ 2.0. Time sections W2.0(t)

of the corresponding MSB are shown in Fig. 12. The upper-left subfigure corresponds to the
instant T1 when the first player stops to pursue. The next subfigure shows the picture for the
instant T2 when the second pursuer finishes its pursuit. At this instant, the horizontal strip is
added, which is a bit wider than the vertical one contracted during the passed period of the
backward time. Then the bridge contracts both in horizontal and vertical directions, and two
additional curvilinear triangles appear (see upper-right subfigure). The lower-left subfigure
gives the view of the section when the vertical strip collapses, and the next subfigure shows
the configuration just after the collapse of the horizontal strip. At this instant, the section
loses connectivity and disjoins into two parts symmetrical with respect to the origin. Further,
these parts continue to contract (as can be seen in the lower-right subfigure) and finally
disappear.

Time sections {Wc(t)} are given in Fig. 13 at the instant t = 2 (τ1 = 7, τ2 = 5). The
set Wc in the space t , x1, x2 for c = 2.0 is shown in Fig. 14. During evolution of the sec-
tions W2.0(t) in t , they change their structure at some instants. These places are marked by
drops in the constructed surface of the set.

We process the sets Wc(t) taken for some grids on c and t to get switching lines.
Switching lines of the first player are given in Fig. 15 at the instant t = 2 (τ1 = 7,

τ2 = 5). The dashed line is the switching line for the component u1; the dotted one is for
the component u2. The switching lines are obtained as a result of the analysis of the func-
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Fig. 12 Two weak pursuers, different termination instants: time sections of the maximal stable bridge W2.0

Fig. 13 Two weak pursuers,
different terminal instants: level
sets of the value function, t = 2

tion x → V (t, x) in horizontal (for u1 in accordance with the direction of the vector D1(t))
and vertical (for u2 in accordance with the direction of the vector D2(t)) lines. If in the con-
sidered horizontal (vertical) line the minimum of the value function is attained in a segment,
then the middle of such a segment is taken as a point for the switching line. Arrows show
the directions of the vectors D1(t)u

∗
1 and D2(t)u

∗
2 in 4 cells. The “spikes” of the switch-

ing line for the control u∗
2 near the origin arise due to discreteness of the collection of the
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Fig. 14 Two weak pursuers, different terminal instants: a three-dimensional view of the set W2.0

Fig. 15 Two weak pursuers,
equal terminal instants: switching
lines for the first player, t = 2

sets Wc(t) involved for constructing switching lines. As the step on c goes to zero, these
spikes disappear.

In Fig. 16 switching lines and the directions of the vectors E(t)v∗ are shown for t = 2.
In this picture, we have 4 cells with constant values of the second player control.

The suggested methods for the players’ controls, which use the switching lines, in the
case of weak pursuers need additional theoretical foundation to justify their closeness to the
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Fig. 16 Two weak pursuers,
equal terminal instants: switching
lines for the second player, t = 2

Fig. 17 Two weak pursuers,
different termination instants:
trajectories of the objects in the
original space, optimal control of
the second player

Fig. 18 Two weak pursuers,
different termination instants:
trajectories of the objects in the
original geometric space,
constant control of the second
player v = +ν

Fig. 19 Two weak pursuers,
different termination instants:
trajectories of the objects in the
original geometric space,
constant control of the second
player v = −ν

optimal ones and to analyze their stability. Corresponding proofs, in the authors’ opinion,
are more difficult than the proofs of Propositions 1 and 2 for the case of strong pursuers.
Now, the authors regard the strategies constructed numerically as “practically optimal”. For
example, to cause the non-optimality of the first player’s control, the second player should
behave himself very sophisticatedly near the switching lines of the first player.
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Figures 17, 18, and 19 show trajectories in the original geometric space (as in Sect. 4.5)
for the case of weak pursuers and different terminal instants. The initial positions at the
instant t0 = 2 are taken as follows:

z0
P1

= −12, z0
P2

= 12, z0
E = 0.

Trajectories in Fig. 17 are built for the optimal controls of all objects. At the beginning
of the pursuit, the evader closes to the first (lower) pursuer. It is done to increase the miss
from the second (upper) pursuer at the instant T2. Further closing is not reasonable, and the
evader switches its control to increase the miss from the first pursuer at the instant T1.

Figure 18 gives the trajectories when the pursuers use their optimal feedback controls
generated by switching lines, but the evader applies a constant control v ≡ ν escaping from
P1 and ignoring P2. In Fig. 19, the situation is given when the evader, vice versa, keeps
control v ≡ −ν escaping from P2 and ignoring P1. In these both situations, the payoff is
less than in the case when the second player uses the optimal control. If a constant control
v = +ν is applied, the miss to the second pursuer at the instant T2 is less; if the second
player keeps v = −ν, the miss to the first pursuer at the instant T1 decreases.

6 One Strong and One Weak Pursuers

Let us change parameters of the second pursuer in (12) and take the following parameters
of the game:

μ1 = 2, μ2 = 1, ν = 1, lP1 = 1/2, lP2 = 1/0.3, lE = 1.

Now the evader is more maneuverable than the second pursuer, and an exact capture by this
pursuer is unavailable. Assume T1 = 5, T2 = 7.

Fig. 20 One strong and one weak pursuers, different termination instants: time sections of the maximal
stable bridge W5.0
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Fig. 21 One strong and one weak pursuers, different termination instants: a three-dimensional view of the
set W5.0

Fig. 22 One strong and one
weak pursuers, different
termination instants: switching
lines and optimal controls for the
first player (the pursuers), t = 1

In Fig. 20, there are sections of MSB W5.0 (that is, c = 5.0) for 6 instants: t = 7.0, 5.0,
2.5, 1.4, 1.0, 0.0. The horizontal part of its time section W5.0(τ ) decreases with growth of τ ,
and breaks further. The vertical part grows. After breaking the individual stable bridge of
the second pursuer (and respective collapse of the horizontal part of the cross), there is the
vertical strip only with two additional parts determined by the joint actions of both pursuers.
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Fig. 23 One strong and one
weak pursuers, different
termination instants: switching
lines and optimal controls for the
second player (the evader), t = 1

Fig. 24 One strong and one
weak pursuers, different
termination instants: trajectories
of the objects in the original
geometric space

A three-dimensional view of the set W5.0 in coordinates t , x1, x2 is given in Fig. 21.
Switching lines of the first and second players for the instant t = 1 are given in Figs. 22

and 23. These lines are obtained by processing collection {Wc(t = 1)} computed for different
values of c. In comparison with the previous case of two weak pursuers, the switching lines
for the first player have simpler structure.

In Fig. 24, one can see the optimal trajectories in the original geometric space. For sim-
ulations, the initial lateral deviations at the instant t0 = 0 are taken as z0

P1
= −20, z0

P2
= 20,

z0
E = 0. Longitudinal components of the initial positions and velocities are such that the

evader moves toward one pursuer, but from another.

7 Varying Advantage of Pursuers

7.1 Variant 1

Let us pass to the case of varying advantage of pursuers. Consider a variant when both
pursuers P1 and P2 are equal, with that at the beginning of the backward time, the bridges
in the individual games contract and further expand. Choose the game parameters in such
a way that for some c the section Wc(t) of MSB Wc with decreasing of t disjoins into two
parts, which join back with further decreasing of t .

Parameters of the game are taken as follows:

μ1 = μ2 = 1.1, ν = 1, lP1 = lP2 = 1/0.6, lE = 1.

Termination instants are equal: T1 = T2 = 20.
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Fig. 25 Varying advantage of the pursuers, variant 1: time sections of the maximal stable bridge W0.526

Fig. 26 Varying advantage of the pursuers, variant 1, equal termination instants: a three-dimensional view
of the maximal stable bridge W0.526

In Fig. 25, the time sections of MSB W0.526 are shown for 6 instants: t = 20.0, 18.0,
16.75, 15.9, 7.5, 5.0. At the termination instant, the terminal set is taken as a cross (the
upper-left subfigure).

At the beginning of backward time, the structure of the bridge is similar to the case of
two weak players: widths of both vertical and horizontal strips of the “cross” decreases, and
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Fig. 27 Varying advantage of
the pursuers, variant 1, equal
termination instants: switching
lines and optimal controls for the
first player (the pursuers),
t = 12.5

Fig. 28 Varying advantage of
the pursuers, variant 1, equal
termination instants: switching
lines and optimal controls for the
second player (the evader),
t = 12.5

two straight-linear additional triangles of joint capture zone appear (the upper-middle sub-
figure). Then at some instant, both strips collapse, and only the triangles constitute the time
section of the bridge (the upper-right subfigure). Further, the triangles continue to contract,
so they become two pentagons separated by an empty space near the origin (the lower-left
subfigure). Transformation to pentagons can be explained in the following way: the first
player using its controls expands the triangles vertically and horizontally, and the second
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Fig. 29 Varying advantage of
the pursuers, variant 1, equal
termination instants: trajectories
of the objects in the original
geometric space

player contracts them in diagonal direction. So, vertical and horizontal edges appear, but the
diagonal part becomes shorter. Also, in general, size of each figure decreases slowly.

Due to action of the second player, the diagonal disappears and the pentagons convert to
squares at some instant (this is not shown in Fig. 25). After that, the pursuers have advan-
tage, and total contraction is changed by growth: the squares start to enlarge. After some
time passes, the squares touch each other at the origin due to the growth (the lower-middle
subfigure). Since the enlargement continues, their sizes grow, and the squares start to overlap
forming one “eight-like” shape (the lower-right subfigure).

A three-dimensional view of MSB Wc corresponding to c = 0.526 is shown in Fig. 26.
Figures 27 and 28 show time sections of a collection of MSBs and switching lines for the

first and second players, respectively, for the instant t = 12.5.
Note that near the central part of the switching line of the second player passing through

the origin, the arrows of the vectors E (t)v∗ are directed from the switching line. In this
case at any point in the switching line, one of values v∗ = ±ν should be chosen. Choice
of some intermediate value v ∈ (−ν, ν) is not optimal. A consequence of this is instability
of the second player’s control with respect to informational disturbances. Erring in analysis
of the location of the current position with respect to the switching line, the second player,
generally speaking, allows a sliding regime along the switching line, which changes in time.
The value function can decrease along the trajectory.

To construct optimal trajectories in the original geometric space, we choose the following
initial positions at the instant t0 = 0:

z0
P1

= 130, z0
P2

= −80, zE = 0.

The resultant miss at the instant T1 = T2 = 20 is about 1.1 and almost cannot be seen in
Fig. 29.

7.2 Variant 2

Let now MSBs in the individual game P 1–E expand at the beginning of the backward time
and further contract (η1 < 1, η1ε1 > 1). Vice versa, in the individual game P 2–E, let MSBs
contract at first and expand further (η2 > 1, η2ε2 < 1). Parameters of the game are taken as
follows:

μ1 = 0.8, μ2 = 1.3, ν = 1, lP1 = 1/20, lP2 = 1/0.5, lE = 1.

Termination instants: T1 = 15, T2 = 13.5.
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Fig. 30 Varying advantage of the pursuers, variant 2, different termination instants: t -sections of
MSB W0.263

In Fig. 30, t -sections of MSB W0.263 are shown for eight instants: t = 13.5, 11.95, 9.4,
7.5, 6.45, 5.4, 4.7, 4.45. At the instant t = T1 = 15, the terminal set is taken as a vertical
strip with the half-width equal to 0.263.

At the beginning of the backward time, the t -section of MSB is a vertical strip and has
growing width. At the instant t = T2 = 13.5, a horizontal strip of half-width 0.263 is added
to the vertical one, which is at that instant. With further growing of the backward time, ad-
ditional curvilinear triangles appear in the II and IV quadrants. Outside them, the horizontal
component of the set W0.263(t) contracts. At the instant t = 11.95, the infinite horizontal
component vanishes. Then some growth in the horizontal direction takes place with high
vertical expand of the knobs generated by the curvilinear triangles. Near the instant t = 9.4,
horizontal increasing is changed by contraction. At the instant t = 6.45, the infinite verti-
cal component disappears. Further with growing the backward time, horizontal contraction
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Fig. 31 Varying advantage of the pursuers, variant 2, different termination instants: a view of MSB W0.263
in the three-dimensional space t , x1, x2

Fig. 32 Varying advantage of
the pursuers, variant 2, different
termination instants: trajectories
of the objects in the original
geometric space

and vertical dilatation have approximately equal speed. When t ≤ 5.4, each t -section has
two vertical protuberances, which collapse at some instant close to t = 4.45. After that, t -
sections are rectangles which dilate in the vertical direction and constrict in the horizontal
one. At the instant t = 0.15, MSB degenerates.

A three-dimensional view of the set W0.263 can be seen in Fig. 31. One can see some dints
on the surface, which are faults of the algorithm for construction of the three-dimensional
object.

Figure 32 gives a view of the optimal trajectories in the original geometric space for the
following initial positions taken at the instant t0 = 0:

z0
P1

= −2, z0
P2

= 1, zE = 0.

At the instants t = T1 and t = T2, there are almost zero deviations of the evader from corre-
sponding pursuers.
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8 Conclusion

The paper deals with numerical investigation of a differential game with two pursuers and
one evader. With the help of the standard change of variables, the problem is reduced to a
two-dimensional antagonistic game. The difficulty of solution is connected to non-convexity
of the terminal payoff function. For typical variants of the game parameters, an analysis of
the level sets (Lebesgue sets) of the value function is done. Three-dimensional views of the
level sets are given. Quasioptimal strategies of the players are suggested. They are based
on usage of switching lines. Situations are emphasized when the strategies defined by the
switching lines are optimal. In general, the question about optimality of the controls needs
additional study.
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