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Informational Sets in a Model Problem of Homing1
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Abstract. A linear pursuit problem in the plane under incomplete pur-
suer information about the evader is investigated. At discrete time
instants, the pursuer measures with errors the angle of vision to the
evader, the angular velocity of the line of sight, and the relative distance.
Other combinations of measurable parameters are possible (for
example, angle of vision and relative distance or angle of vision only).
The measurements errors obey certain geometric constraints. The initial
uncertainties on the evader coordinates and velocities are given in
advance. Having a resource of impulse control, the pursuer tries to
minimize the miss distance. The evader control is bounded in modulus.

The problem is formulated as an auxiliary differential game. Here,
the notion of informational set is central. The informational set is the
totality of pointwise phase states consistent with the history of the
observation-control process. The informational set depends on the cur-
rent measurements; it changes in time and plays the role of a generalized
state, which is used for constructing the pursuer control.

A control method designed for the linear pursuit problem is used
in the planar problem of a vehicle homing toward a dangerous space
object. The nonlinear dynamics is described by the Kepler equations.
Nonlinear terms of the equations in relative coordinates are small and
are replaced by an uncertain vector parameter, which is bounded in
modulus and is regarded as an evader control. As a result, we obtain
the mentioned control problem in the plane.

The final part of the paper is devoted to the simulation of a space
vehicle homing toward a dangerous space object. In testing the control
method developed, two variants are considered: random measurement
errors and game method of constructing the measurements; the latter is
also described in the paper.

1This research was supported by the Russian Foundation for Basic Researches under Grant
00-01-00348.

2Senior Research Scientist, Institute of Mathematics and Mechanics, Russian Academy of
Sciences, Ekaterinburg, Russia.

3Senior Research Scientist, Institute of Mathematics and Mechanics, Russian Academy of
Sciences, Ekaterinburg, Russia.

499
0022-3239�01�0300-0499$19.50�0  2001 Plenum Publishing Corporation



JOTA: VOL. 108, NO. 3, MARCH 2001500

Key Words. Feedback control, impulse control, differential games,
problems with incomplete information, informational sets, numerical
methods, space vehicle homing.

Notations

BGgeometric constraint on the evader initial relative position vector;
dGtrue relative distance, m;
dmGmeasured value of the relative distance, m;
DGgeometric constraint on the evader initial relative velocity vector;
eGmodulus of the nominal initial relative velocity vector, m sec−1;
EnomGnominal initial state of the evader in the relative coordinate

system;
hGtime step of the discrete control scheme, sec;
Hx , Hα , HωGuncertainty sets of measurements: longitudinal distance,

angle of vision, angular velocity;
I−, I, I+Ginformational sets: before a measurement, after it, after

applying an impulse control;
k(ti )Gimpulse control at the time instant ti , m sec−1;
KGgravitational constant of the Sun, km3 sec−2;
rV , rDGvehicle and dangerous space object radial distances to the Sun,

km;
ux , uzGcomponents of the vehicle control vector, m sec−2;
UsGstrategy of maintaining the symmetry of the forecast miss

distance;
ûx , ûzGevader acceleration components, m sec−2;
Vx , VzGrelative velocity components, m sec−1;
VnomGnominal value of the initial relative velocity vector, m sec−1;
x, zGaxes of the relative coordinate system;
xD , zDGlongitudinal and lateral coordinates of the dangerous space

object in an inertial heliocentric coordinate system, km;
xV , zVGlongitudinal and lateral coordinates of the space vehicle in an

inertial heliocentric coordinate system, km;
αGtrue angle of vision, rad;
αmGmeasured angle of vision, rad;
βGmeasurement error of the relative distance, m;
(Glongitudinal distance threshold for interruption of control and con-

struction of the informational sets, m;
ζGmeasurement error of the angle of vision, rad;
η∏ , η*Gleft and right edges of the interval of the forecast miss dis-

tance, m;
µGbound on the resource of impulse control, m sec−1;
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µ1, µ2Glower and upper bounds on the modulus of the impulse control
at the current time instant, m sec−1;

νGbound on the modulus of the evader acceleration, m sec−2;
ξGmeasurement error of the line-of-sight angular velocity, rad sec−1;
ΠGpassive forecast miss distance, m;
ωGtrue line-of-sight angular velocity, rad sec−1;
ωmGmeasured line-of-sight angular velocity, rad sec−1.

Acronyms

DGGdifferential game;
DSOGdangerous space object;
ISGinformational set;
SVGspace vehicle.

1. Introduction

Quite often in control problems, the phase state vector cannot be meas-
ured in full. Instead, a certain vector depending on the phase state is meas-
ured with an induced error. In the latter case, two types of problem
formulation are known. One formulation includes certain probabilistic
assumptions about the measurement error. In the other formulation, one
imposes certain geometric constraints on the measurement error. The latter
approach is investigated in this paper.

Under geometric constraints, it is known only that the measurement
error belongs to some given set. No more data on the error are assumed to
be known. Using the incoming measurements, it is hypothetically possible
to find the totality of all phase states that do not contradict the obtained
information and therefore are admissible; this is called the informational set
(IS). The IS changes in time, plays the role of a generalized state, and can
be used for constructing the pursuer feedback control.

Since the IS depends on the current measurement, minimax formu-
lations are natural. In such formulations, the first player governs the object
control and tries to minimize a certain performance index, while the second
player (nature) forms the measurements by maximizing the value of the
performance index.

The minimax approach to control problems with incomplete informa-
tion had been studied intensively in the middle of the 70’s; see Refs. 1–5
and references therein. The main efforts were directed toward problem for-
mulation and transfer of the basic definitions and statements of differential
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game (DG) theory to problems with incomplete information. We note that,
in real problems, the construction of the IS is a difficult task, and this is
more complicated when building optimal or near-optimal feedback controls.
For some actual problems solved analytically, see Refs. 3 and 6–7.

This paper deals with the following model problem of pursuit. Two
material points (pursuer and evader) move in the plane. The pursuer meas-
ures the direction to the evader (i.e., the angle of vision), the angular velocity
of the line of sight, and the relative distance. Other variants are possible;
for example, the measured quantities might include the angle of vision and
the relative distance or the angle of vision only. The measurement errors
obey certain geometric constraints. The aim of the control is the minimiz-
ation of the miss distance (sometime shortened to miss). The pursuer control
is applied impulsewise. When applying a control impulse, the pursuer veloc-
ity changes stepwise. The impulses operate orthogonally to some chosen
direction that is kept constant in time: this is the direction leading from the
initial pursuer position to the nominal initial position of the evader.

The following assumptions are made: by appropriate choice of the
initial velocity, a pursuer can force the nominal relative velocity vector to
be opposite to the mentioned direction; the resource of impulse control is
given in advance; the evader control affects its acceleration and obeys cer-
tain geometric constraints. Also, we assume that the variation of the relative
velocity vector, which occurs during the motion due to the pursuer and
evader controls, is small (weak controllability assumption). Indeed, the pur-
suer impulse control is applied to correct a motion, which is governed
entirely by the initial conditions.

A pursuit problem close to the above was investigated in Refs. 8–9,
where the stochastic nature of the measurement error was assumed.

In this paper, the pursuer feedback control is constructed on the basis
of the investigation of a special auxiliary DG, in which the state at the
current time instant is represented by the IS. A functional of the miss dis-
tance is introduced on the IS motions. This functional is minimized by the
first player who governs the choice of the impulse control; the second player
(nature) maximizes the functional.

The simulation results of pursuit in the plane, when the pursuer uses
the control method obtained from the analysis of the aforementioned DG,
can be found in Refs. 10–14. In this paper, we apply such method to the
construction of the control in the problem of a space vehicle (SV) homing
toward an asteroid of a relatively small size or toward some other dangerous
space object (DSO). The aim of homing is the DSO destruction or at least
a change of the DSO trajectory. Similar problems, related to the Earth pro-
tection from DSO, are investigated nowadays; see e.g. Refs. 15–17.
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We assume that the SV and DSO orbits are coplanar. The Kepler equa-
tions of motion are used. The original nonlinear problem is replaced by a
linear problem of pursuit. The evader control is a fictitious one. It is
regarded as a parameter that describes an error induced by a transformation
of the nonlinear system into the linear one. The constraint on the evader
control is given from the estimation of the linearization error. The problem
of pursuit in the plane is an intermediate one between the original nonlinear
problem and the auxiliary DG.

The results of computer simulation of the SV-to-DSO homing process
are presented. To test the suggested method of SV control, two variants of
the measurement construction are applied: one variant uses a random num-
ber generator; another variant is the game construction, which results from
the auxiliary DG.

2. Pursuit Problem in the Plane

Consider now a problem of pursuit of one material point by another
under incomplete information of the pursuer P about the evader E. Let us
join the origin of the relative coordinate system with the pursuer. Assume
that, at the initial time instant t0, a nominal (precalculated) evader state
Enom and a nominal velocity vector Vnom are given in the relative coordinate
system. We suppose that the vector Vnom is applied at the point Enom and is
directed to the point P, i.e., to the origin of the system. The direction of the
x-axis of the relative coordinate system is opposite to the direction of the
vector Vnom; the z-axis is orthogonal to the x-axis (Fig. 1). The directions
of both axes are constant in the time t. The angle between the x-axis and
the line of sight, joining the origin P of the relative coordinate system with
the point E, is called the angle of vision α . The true evader position E at
the initial time instant can differ from the nominal one, and the true initial
relative velocity vector can differ from the nominal one. The modulus of
the vector Vnom is denoted by e.

The pursuer control is impulsive. The pursuer can change his velocity,
and correspondingly the relative velocity, in a stepwise manner. The
impulses operate perpendicularly to the x-axis, i.e., along the z-axis posi-
tively or negatively. Such directions of the impulses provide economical
expenditure of the control resource in the problem of the miss distance
minimization. The resource µ of the control impulses is given in advance.
The evader control vector û, with components ûz and ûx , has the dimension
of an acceleration and is bounded by the condition

�û�⁄ν.
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Fig. 1. Relative coordinate system and initial uncertainties.

It is assumed that the pursuer control is realized in a discrete scheme
with a time step h. Let k(ti ) be the impulse control at the time instant ti . It
could be equal to zero or differ from it. In the latter case, let us assume that

µ1⁄ �k(ti ) �⁄µ2,

where µ1, µ2 are given constants. The constraint on the total expenditure of
the control is

∑
i

�k(ti ) �⁄µ.

Let n(ti ) be the control resource at the current time instant ti (before apply-
ing the control at this instant). At the initial instant, n(t0)Gµ.

The dynamic equations in the relative coordinates z, x are the
following:

z̈ (t)GûzA∑
i

k(ti )δ(tAti ), (1a)

ẍ (t)Gûx , (1b)

k(ti ) ∈ {0} ∪ {k: µ1⁄ �k�⁄µ2}, ∑
i

�k(ti ) �⁄µ, �û�⁄ν. (1c)
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Here, δ is the delta function. The impulse control at the time instant ti
changes the velocity ż impulsively by the value ∆żG−k(ti ).

The angle of vision and independently the angular velocity of the line
of sight are measured at some time instants ti (with the given step in t)
before building the pursuer control. A variant is possible when only one of
these variables is measured. Additionally, measurements of the relative dis-
tance between P and E can be carried out. The models of the measurement
errors are

αm (ti )Gα (ti )Cζ (ti ), �ζ (ti ) �⁄a, a¤0, (2)

ωm (ti )Gω(ti )Cξ (ti ), �ξ (ti ) �⁄c1�ω(ti ) �Cc2, 1Hc1¤0, c2¤0, (3)

dm (ti )Gd(ti )Cβ(ti ), �β(ti ) �⁄bd(ti ), 1Hb¤0. (4)

Here, αm (ti ), ωm (ti ), dm (ti ) are the measured values of the angle of vision,
angular velocity, and the relative distance; α (ti ), ω(ti ), d(ti ) are the true
values; ζ (ti ), ξ (ti ), β(ti ) are the measurement errors. The error of the angle
of vision measurement is bounded by the constant a. If the constant c1 is
equal to zero, then the bound on the error of the angular velocity measure-
ment does not depend on the value of the true angular velocity. If the con-
stant c2 is equal to zero, then the relative error of the angular velocity
measurement is bounded. The relative error of the relative distance measure-
ment is bounded geometrically by the constant b.

The initial uncertainties of the relative geometric state [z(t0), x(t0)]
T and

relative velocity [Vz (t0), Vx (t0)]
T are written as follows:

[z(t0), x(t0)]
T ∈ B, [Vz (t0), Vx (t0)]

T ∈ D. (5)

Here,

BG[z0, z
0 ]B[x0, x

0 ], DG[Vz0 , V
0
z ]B[Vx0 , V

0
x ]

are rectangles (Fig. 1), symmetric with respect to points Enom and Vnom; the
superscript T denotes transposition of vector.

Formulas (1)–(5) are known to the pursuer. The variant of obtaining
the measurements is also given. Let us assume that the measurements of the
angle of vision (if any) occur with the time step σαh; the time step of the
angular velocity measurements is σωh; for the relative distance measure-
ments, the time step is σdh. Here, σα , σω, σd are positive integers.

The aim of the pursuit is the miss distance minimization. The minimal
value of the distance d(t) through all time of the pursuit process is regarded
as the miss distance. Our goal is to construct the pursuer feedback control
that gives a satisfactory solution of the miss distance minimization problem
under incomplete information.

Investigations of this problem are implemented under the following
simplifying assumption. We shall suppose that the variations of the vector
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of the relative velocity caused by the pursuer and evader controls are rela-
tively small during the pursuit process. It is also assumed that the size of
the set D and the span of the set B along the z-axis are small. More precisely,
the last assumption means that ratio z0�x0 is small.

3. Auxiliary Game with Incomplete Information

We formulate now an auxiliary DG of two persons in which the state
at the current time instant ti is a pair: the IS and the residual resource of
the impulse control.

3.1. Equivalent Coordinates. Let us rewrite the system (1) in the coor-
dinates α , ω, x, Vx . We consider xH0, �α �Fπ�2. Differentiating the relation
z(t)Gx(t) tan α (t) twice with respect to t, we obtain

z̈ (t)Gẍ (t) tan α (t)

C[2ẋ(t)α̇ (t)C2x(t) tan α(t)α̇2(t)Cx(t)α̈ (t)]�cos2 α (t),

with the implication that

α̈ (t)G[z̈ (t) cos2 α (t)Aẍ (t) sin α (t) cos α (t)A2ẋ(t)α̇ (t)]�x(t)

A2 tan α (t)α̇ 2(t).

In first-order form, we have

α̇ (t)Gω(t), (6a)

ω̇(t)G−2Vx (t)ω(t)�x(t)A2 tan α (t)ω2(t)

−sin α (t) cos α (t)ûx�x(t)Ccos2 α (t)ûz�x(t)

−[cos2 α (t)�x(t)]∑
i

k(ti )δ(tAti ), (6b)

ẋ(t)GVx (t), (6c)

V̇x (t)Gûx , (6d)

k(ti ) ∈ {0} ∪ {k: µ1⁄ �k�⁄µ2}, ∑
i

�k(ti ) �⁄µ, �û�⁄ν. (6e)

3.2. Dynamic Equations and Measurement Formulas in the Auxiliary
Game. Let us simplify the system (6). In the problem under discussion,
the pursuer is interested in the miss distance minimization. The assumption
regarding weak controllability leads to the fact that, taking into account the
vector Vnom direction along the x-axis, the calculation of the miss distance
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along each actual trajectory of the system (1) can be approximated by the
value of the coordinate z in modulus at the time instant when this trajectory
crosses the z-axis. Additionally, the value of the miss distance depends more
on the variation of the velocity along the z-axis, and less on the variation
of the velocity along the x-axis. Therefore, simplifying the system (6), we
can consider Vx(t0) to be known exactly and to be coincident with Vx nomG

−e, with the control ûx equal to zero. Then, the variation of the coordinate
x is described by the relation

x(t)Gx(t0)Ae(tAt0).

Furthermore, the weak controllability assumption and the discussed
conditions on the sets B and D allow one to regard the angle of vision α to
be small on a long time interval beginning from the initial time instant.
Therefore, in the description of the dynamics of the auxiliary problem, we
can replace sin α by zero and cos α by one. Assuming also that the accelera-
tion ûz is chosen from the segment [−ν, ν], we obtain the simplified system

α̇ (t)Gω(t), (7a)

ω̇(t)G2eω(t)�x(t)Cûz�x(t)A(1�x(t))∑
i

k(ti )δ(tAti ), (7b)

x(t)Gx(t0)Ae(tAt0), (7c)

k(ti ) ∈ {0} ∪ {k: µ1⁄ �k�⁄µ2}, ∑
i

�k(ti ) �⁄µ, �ûz �⁄ν. (7d)

Under the action of an impulse control at the time instant ti , the coordinates
α and x do not vary, but the coordinate ω changes stepwise by the value

∆ωG−k(ti )�x(ti ).

The formulas for the variations of the coordinates α , ω on the interval
[ti , tiC1) when ûz ≡ ±ν are the following:

α (t)Gα (ti )C[ω(ti )(tAti )x(ti )Jν (tAti )
2�2Ak(ti )(tAti )]�x(t), (8)

ω(t)G[ω(ti )x
2(ti )Jν (tAti )(x(ti )Ae(tAti )�2)Ak(ti )x(ti )]�x2(t). (9)

To construct the measurements in the auxiliary problem, let us replace
the relative distance d by its projection onto the x-axis. The relations for
the distance measurements are

xm (ti )Gx(ti )Cβ(ti ), �β(ti ) �⁄bx(ti ), 1Hb¤0. (10)

Thus, for the miss distance minimization problem, we have substituted the
system (1) by the system (7) and the formulas (4) by the relations (10). The
formulas (2)–(3) for the angle of vision and angular velocity measurements
stay unchanged.



JOTA: VOL. 108, NO. 3, MARCH 2001508

3.3. Informational Sets. For the system (7), the totality of all states
consistent with the history of the observation-control process is called the
informational set.

The angle of vision α and the angular velocity ω correspond to the
quadruple z, x, Vz , Vx and are calculated as follows:

αGarctan(z�x), ωG(VzxAVxz)�(x2Cz2). (11)

Using these formulas, we can put the initial informational set I−(t0) in the
coordinates α , ω, x in correspondence to the set BBD. Namely, for each
x ∈ [x0, x

0 ], let us introduce a rectangle with its sides parallel to the axes α ,
ω and the coordinates of the vertex points

α 0(x)Garctan(z0�x), α 0(x)Garctan(z0�x),

ω0(x)G(Vz0xAVx0z0)�x2, ω0(x)G(V 0
zxAVx0z

0)�x2.

The set I −(t0) is described by the totality of such rectangles. The set I −(t0)
gives the upper estimate for the image of the set BBD when the latter is
mapped into the space α , ω, x via the formulas (11).

Let us define a recurrent procedure of the IS calculation in time. Taking
into account that the system (7) has a singularity at xG0, a threshold (H0
is introduced. Assume that, at the current time instant ti , we have the infor-
mational set I−(ti ), which was constructed in the space α , ω, x, with x¤(.

If at the time instant ti a measurement αm (ti ) occurs, then denote by
Hα (ti ) the corresponding uncertainty set, i.e., the totality of all points α , ω,
x such that, for each of them, the measurement αm is possible according to
the formulas

αm (ti )GαCζ , �ζ �⁄a.

The set Hα (ti ) is cylindrical in ω, x. Its projection H α (ti ) onto the α -axis
is the segment [αm (ti )Aa, αm (ti )Ca]. If at the time instant ti a measurement
of the angle of vision does not occur, then the set Hα (ti ) is formally defined
to be coincident with R3.

Let us put a set of uncertainty Hω(ti ) in correspondence to the measure-
ment ωm (ti ). It is the totality of all points α , ω, x such that, for each of
them, the measurement ωm is possible according to the formulas

ωm (ti )GωCξ , �ξ �⁄c1�ω�Cc2.

The set Hω(ti ) is cylindrical in α , x. Its projection H ω(ti ) onto the ω-axis
is described by the following relations:

H ωG�
[(ωmAc2)�(1Cc1), (ωmCc2)�(1Ac1)], if ωm¤c2,

[(ωmAc2)�(1Ac1), (ωmCc2)�(1Ac1)], if −c2FωmFc2,

[(ωmAc2)�(1Ac1), (ωmCc2)�(1Cc1)], if ωm⁄−c2.
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The span of the interval H ω depends on ωm (Fig. 2). If at the time instant
ti a measurement of the angular velocity does not occur, we suppose that
Hω(ti )GR3.

Similarly, by the formulas (10), an uncertainty set Hx (ti ), which corre-
sponds to a measurement xm (ti ) of the relative distance, is cylindrical in α ,
ω. Its projection H x (ti ) onto the x-axis is the segment [xm (ti )�(1Cb), xm (ti )�
(1Ab)]. If at the time instant ti , the relative distance measurement does not
appear, then it is supposed that Hx (ti )GR3.

The informational set I(ti ) is defined by the relation

I(ti )GI−(ti )∩Hα (ti )∩Hω(ti )∩Hx (ti ).

If the measurements of the angular velocity and relative distance are absent,
then evidently we have

I(ti )GI−(ti )∩Hα (ti ).

If at the time instant ti all measurements are absent, then

I(ti )GI−(ti ).

After the construction of the set I(ti ), the control k(ti ) is determined.
While the control is applied, the set I(ti ) is transformed into the set I+(ti ).

Fig. 2. Span of the measurement uncertainty interval.
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The mapping I(ti )→I+(ti ) is a shift of each x-section of the set I(ti ) by the
value −k(ti )�x along the ω-axis. If k(ti )G0, then

I+(ti )GI(ti ).

We denote by J( (ti ) the part of the set I+(ti ) such that xF(Ceh. This
part will go under the threshold ( on the x-axis at the instant tiC1G tiCh.
We put

I+( (ti )GI+(ti ) \J( (ti ).

Let I−(tiC1) be the phase state forecast of the system (7) at the time
instant tiC1 corresponding to its state I+((ti ) at the instant ti , zero impulse
control, and all admissible variations of the parameter ûz , �ûz �⁄ν. The set
I−(tiC1) is the result of the linear system (7) action onto the x-sections of the
set I+( (ti ). Here, each convex set is transformed into a convex one. There-
fore, a recurrent sequence of the IS is defined.

Each of the sets I−(ti ), I(ti ), I+(ti ), I+( (ti ) is called the informational set
(before a measurement, after it, after applying the impulse control, and after
(-cutoff, correspondingly). The set I−(ti ) is also called the forecast infor-
mational set.

3.4. Formalization of the Auxiliary Game. By motion, we mean the IS
evolution in time. The first player governs the impulse control. The second
player constructs the measurements. The influence of the parameter ûz is
taken into account when constructing the sets I−(ti ).

The triplet (ti , n, I ) is called the game position for the first player. Here,
ti is a time instant, n describes the residual resource of the impulse control,
I is the informational set after the measurement. As an admissible strategy
U of the first player, a rule (ti , n, I )→k maps each game position into the
impulse control k, bounded by the following condition: if k ≠ 0, then

µ1⁄ �k�⁄µ2, �k�⁄n.

The triplet (ti , n, I−) is called the game position for the second player.
Here, I− is the informational set before a measurement. As an admissible
strategy Ω for the second player, a rule (ti , n, I−)→(αm ,ωm , xm ) maps each
position into the measurements. If at the time instant ti some of the param-
eters mentioned above are not measured, then the construction of the corre-
sponding measurements is not implemented. We require that

I−∩Hα∩Hω∩Hx ≠ ∅ .

Here, Hα , Hω, Hx are the uncertainty sets constructed by the measurements
αm , ωm , xm . The nonemptiness of the intersection reflects the fact that, at
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the time instant ti , some states of the system (7) must be true; therefore,
they must belong to both the set I− and each of the sets Hα , Hω, Hx .

Having an initial position (t0, n(t0), I−(t0)), the concrete admissible stra-
tegies U, Ω, the step h, and the parameter (, it is possible to speak about
the IS motion in time.

Let us define a payoff functional. For an arbitrary pair ω, x, with xH0,
let

Π(ω, x)G�ω�x2�e. (12)

The value Π(ω, x) approximates a passive forecast miss distance from the
state ω, x, i.e., the miss distance computed when the free motion of the
system (1) crosses the z-axis. For the exact calculation of the passive forecast
miss distance, it would be necessary to have not only the values ω, x, but
also the angle of vision α , namely, �ω�x2�e cos2 α . The meaning of this for-
mula is clarified by the fact that ωx�cos2 α is the horizontal component of
the velocity vector of the system (1) in the representation that uses the line
of sight, and x�e is the time left until the crossing of the z-axis. Neglecting
the small angle α , we obtain the formula (12). Let

Π̂(ω, x)GΠ(ω, x)Cν (x�e)2�2.

The term ν (x�e)2�2 is the maximal possible increment of the miss distance
due to the acceleration ûz , �ûz �⁄ν. The number

Π̄(M )G sup
(ω,x) ∈ M

Π̂(ω, x)

is put in correspondence to each arbitrary set M in the space ω, x.
On every actual motion of the IS, the totality of time instants ti such

that J( (ti ) ≠ ∅ is denoted by the symbol T( . The number

Φ(t0, n(t0), I−(t0), U,Ω, (, h)Gmax
ti ∈ T(

Π̄(J( (ti ))

is called the miss distance corresponding to the initial position
(t0, n(t0), I−(t0)), strategies U, Ω, step h, and parameter (.

Let us clarify the meaning of the value Φ. For a given threshold (, it is
assumed that, after the time instant ti , the impulse control ceases to operate
for the part of the informational set I+(ti ) that, at the instant tiC1 , will be
below the level (. Namely, this is the set J( (ti ). The single-point motions
arising from J( (ti ) terminate. But at the same time, the motions that orig-
inate from the part I+( (ti )GI+(ti ) \J( (ti ) continue. The payoff for J( (ti ) is
naturally defined as Π̄(J( (ti )). Furthermore, the maximum is chosen through
all the time instants ti for which J( (ti ) is not empty.
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The best guarantee for the first player is defined by the relation

Γ(1)(t0, n(t0), I−(t0))Ginf
U

lim
(→0

lim
h→0

sup
Ω

Φ(t0, n(t0), I−(t0), U,Ω, (, h).

The strategy on which the outer extremum is achieved is called optimal.
Constructively building the optimal strategy seems to be a very hard prob-
lem. Below, one reasonable variant of the first player strategy is suggested.

3.5. Strategy of Maintaining the Forecast Miss Distance
Symmetry. Let us put the projection of the x-section of the set I in the
plane ω, x in correspondence to each x. This projection is a line segment.
We denote by L(I ) the union of such segments. Let ∂*L(I ) be the totality
of the right edges of the segments (each for its own x) composing the set
L(I ). Similarly, ∂∏L(I ) is the totality of the left edges. Denote

η*(I )Gmax{ωx2�eCν (x�e)2�2: (ω, x) ∈∂ *L(I )}, (13)

η∏ (I )Gmin{ωx2�eAν (x�e)2�2: (ω, x) ∈∂ ∏L(I )}. (14)

Let (ω*, x*), (ω∏ , x∏) be the corresponding points on which the maximum
in (13) and minimum in (14) are achieved. The segment η with the edges
η∏ (I ), η*(I ) is called the interval of the forecast miss distance that corre-
sponds to the set I. The marginal (in modulus) edge of the interval η is
interpreted as the maximal forecast miss distance.

Just when the impulse control is applied, the miss distance for the for-
mer maximizing point in (13) is changed instantly by the value

(∆ω)x*2�eG(−k�x*)x*2�eG−kx*�e,

and for the minimizing point in (14) it is changed by

(∆ω)x2∏�eG−kx∏�e.

Here, ∆ω is the impulsive jump of the angular velocity. Let us write the
symmetry relation

η*Akx*�eG−(η∏Akx∏�e).

Solving it with respect to the unknown k, we obtain

ksG(η*Cη∏)e�(x*Cx∏). (15)

Let I be the current informational set, and let n be the residual resource
of the impulse control. The feedback control Us is defined as the function
that puts a number ks in correspondence to each pair I, n. The number ks

is calculated via the formula (15) if

µ1⁄ �ks �⁄µ2, �ks �⁄n;
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note that

either ksGmin{µ2, n}sign ks , if �ks �¤µ1, �ks�Hmin{µ2, n};

or ksG0, if �ks�Fµ1 or nFµ1.

The control Us tries to maintain the symmetry of the interval η with
respect to zero. The maximal forecast miss distance does not increase in the
time intervals between the control impulses. At the instants while the
impulses are applied, the forecast miss distance decreases. The control ceases
when the IS drops completely below the threshold ( along the x-axis.

3.6. Remark. Let us discuss now a special case when the only measur-
able parameter is the angular velocity, while the angle of vision and the
relative distance are not measured.

Since the angle of vision α does not appear in the formulas of the
payoff functional nor in the strategy of maintaining the forecast miss dis-
tance symmetry, and since the uncertainty set Hω is cylindrical in α , we
disregard the equation α̇ (t)Gω(t) in the system (7), and we can carry out
all the constructions described in the coordinates ω, x. In this case, the IS
is the totality of the segments in the plane ω, x. Each segment in the IS is
parallel to the ω-axis and corresponds to the actual value of the coordinate
x. Here, the computational operations related to the IS constructions and
transformations in time are simplified significantly. We have shown that, if
the initial IS consists of a single segment, then the strategy Us of maintaining
the forecast miss symmetry is optimal; see Refs. 11, 18.

4. Nonlinear Problem of Homing

We now consider the problem of a SV homing toward a DSO in outer
space. The motions of the SV and DSO are assumed to be coplanar and
can be described in a heliocentric inertial coordinate system via the equa-
tions (see e.g. Ref. 19)

z̈VG−KzV�r3
VCuz , (16a)

ẍVG−KxV�r3
VCux , (16b)

z̈DG−KzD�r3
D , (17a)

ẍDG−KxD�r3
D . (17b)

Here, zV , xV are the SV coordinates; zD , xD are the DSO coordinates; uz , ux

are the components of the SV control vector; rV , rD are the SV and DSO
radial distances to the Sun; K is the Sun gravitational constant.
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The control uG(uz , ux )T is implemented in the form of relatively strong
accelerations which act on short time intervals. The accelerations are
applied orthogonally to the vehicle longitudinal axis. Idealizing the charac-
ter of the control, we assume it to be impulsewise. The resource of the
impulse control is bounded. Let h be the time step of the discrete scheme of
control.

Using the relative coordinates

zGzDAzV , xGxDAxV ,

we can define the relative motion of the DSO as follows:

z̈G−Kz�r3
VAKzD (r3

VAr3
D )�r3

Vr3
DAuz , (18a)

ẍG−Kx�r3
VAKxD (r3

VAr3
D )�r3

Vr3
DAux . (18b)

The nonlinear components of the right-hand sides contain the values rV , rD ,
zD , xD that are represented using the coordinates of the original system
(16)–(17).

When the SV self-homing process begins, the nominal DSO position at
the initial time instant and the nominal velocity vector are known. Assume
that the x-axis of the relative inertial system coincides with the longitudinal
SV axis and is oriented from the SV center of mass toward the point of the
nominal DSO position; the z-axis is orthogonal to this direction. With such
orientation, the component ux of the control vector is equal to zero. We
also assume that the nominal relative velocity vector has the direction
opposite to the x-axis. The initial uncertainties of the state and the velocity
are given in the relative coordinates in the form of some rectangles B, D.

During the homing process, the angle of vision measurements are
obtained with the time step σαh, and the distance measurements between
the SV and DSO are obtained with the time step σdh. The measurements
errors are bounded by (2), (4). The angular velocity measurements are not
implemented. If at the time instant ti the impulse control k(ti ) ≠ 0, then it
satisfies the constraint

µ1⁄ �k(ti ) �⁄µ2.

The general constraint is

∑
i

�k(ti ) �⁄µ.

Thus, the system (18) is written as follows:

z̈G−Kz�r3
VAKzD (r3

VAr3
D )�r3

Vr3
DA∑

i

k(ti )δ(tAti ), (19a)

ẍG−Kx�r3
VAKxD (r3

VAr3
D )�r3

Vr3
D , (19b)

k(ti ) ∈ {0} ∪ {k: µ1⁄ �k�⁄µ2}, ∑
i

�k(ti ) �⁄µ. (19c)
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Let us consider the right-hand sides of the equations (19a), (19b). Each
side contains two nonlinear terms. The first term depends on the corre-
sponding true relative coordinate and, during the homing process, is small
since the magnitude rV in the denominator is approximately constant and
exceeds the value of the relative coordinate by many orders. Furthermore,
the coordinate x decreases monotonically during the homing process. For
the same reason, the second term is small, too.

Let us replace the nonlinear terms in (19a) by the disturbance factor
ûz , and let us replace the nonlinear terms in (19b) by the disturbance factor
ûx . We assume ûG(ûz , ûx )T to be the fictitious evader accelerations that can
change within the constraint limit �û�⁄ν during the homing process. The
value ν is the upper estimate (in modulus) of the vector whose components
on the z-axis and x-axis are the nonlinear terms in (19a), (19b). As a result,
the system (19) becomes the system (1), and we can use the control method
Us described in Section 3.

5. Numerical Constructions and Computation of Measurements

The control method Us is used in the systems (16)–(17). We assume
that the SV onboard control system carries out all the necessary calculations
for the IS construction and operating the controls.

In the numerical realization, the IS is defined by a finite number of its
convex x-sections. During the transition from the time instant ti to the time
instant tiC1 , each section is recalculated independently of all the others. The
explicit formulas (8)–(9) are used for the integration of the system (7). The
convex addenda appearing because of the parameter ûz is substituted by a
segment. As a result, the x-section is approximated by a convex polygon.
During the homing process, the number of x-sections in the IS can decrease.
At some time instant, if the residual number of sections becomes smaller
than the predefined value, then additional sections are introduced.

The initial informational set I−(t0) is calculated on the basis of the sets
B and D that define the initial uncertainties in position and velocity. The
set I−(t0) is stored as a collection of rectangles in the plane α , ω. Each
rectangle corresponds to a certain value of the longitudinal distance x.

During simulation of an actual homing process, the true phase point
(represented by the coordinates α , ω, x) can go out of the IS. It is governed
by the fact that the system (7) used for the IS construction differs from the
system (6). As a result, after the next performance of the intersection pro-
cedure, the informational set I(ti ) may become empty. Thus, the process of
further IS construction and the algorithm building the impulse control could
be disrupted. To avoid the true point falling outside the IS, we increase
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slightly the initial informational set I−(t0) along the coordinate x and also
increase the bound ν of the parameter ûz . Here, we use the structure of Eq.
(6b). Increasing properly the bound ν, we compensate (almost throughout
the time of the homing process) the influence of the following factors on the
variation of ω: the parameter ûx , variation of the velocity Vx , and the term
2 tan α (t)ω2(t). These three factors are not taken into account in (7b).

According to (2), the measurement αm (ti ) of the angle of vision at the
time instant ti must belong to the interval [α (1)(ti ), α (2)(ti )], where

α (1)(ti )Gα (ti )Aa, α (2)(ti )Gα (ti )Ca,

and α (ti ) is the true angle of vision. By virtue of (4), the distance measure-
ment dm (ti ) must be in the interval [d (1)(ti ), d

(2)(ti )], where

d (1)(ti )Gd(ti )(1Ab), d (2)(ti )Gd(ti )(1Cb),

and d(ti ) is the true distance. When building the sets Hx (ti ), we assume that

xm (ti )Gdm (ti ).

To test the control method Us , two algorithms of measurement con-
struction are applied: the random generation algorithm and the game con-
struction algorithm. In the first algorithm, the values αm (ti ), dm (ti ) are
obtained by means of the random number generator using the uniform dis-
tribution laws in the intervals [α (1)(ti ), α (2)(ti )], [d (1)(ti ), d

(2)(ti )]. When com-
puting the game measurements, the sets I−(ti ) are used. The game error is
designed to keep the point of the maximal forecast miss distance of the set
I−(ti ) in the set I(ti ) during the transition from I−(ti ) to I(ti ), if possible.

The game rule for distance measurement construction is described as
follows. Having the set I−(ti ) at the instant ti , we find the largest η*(I−) and
the least η∏ (I−) forecast miss distances; to simplify the formulas, we omit
the symbol ti here and below. The calculations are carried out using (13)–
(14), where the set I− is substituted for the set I. Let (α *,ω*, x*) and
(α ∏ ,ω∏ , x∏) be the triplets on which the misses η*(I−) and η∏(I−) are
achieved.

Between the points x* and x∏ , we denote by x ′ the one that corre-
sponds to the maximal (in modulus) forecast miss distance. Two cases are
possible:

(C1) x ′Gmax{x*, x∏},

(C2) x ′Gmin{x*, x∏}.

Consider Case C1. Let us assume that

d ′Gx ′(1Ab).
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Let d̂m be the nearest point to d ′ of the interval [d (1), d (2)]. Let x̄ be the least
value of the projection of the set I− onto the x-axis. Denote

drGx̄(1Cb).

If d̂m¤dr or if d̂mFdr and d̂mGd (2), then assume that

dm (ti )Gd̂m .

If d̂mFdr and d̂m ≠ d (2), then assume that

dm (ti )Gmin{dr , d (2)}.

Let us clarify the mentioned method of construction of the relative
distance measurement. In the case considered, the worst of the points x*, x∏
is denoted by x ′ and is above the second extremum point. The preliminary
appointed measurement d̂m pulls the upper border of the interval

H x (d̂m )G[d̂m�(1Ab), d̂m�(1Ab)]

closer to the point x ′. Apparently, if d̂mFdr and d̂m ≠ d (2), then both points
x* and x∏ lie in the interval H x (d̂m ). In such case, the preliminary appointed
measurement d̂m is modified to keep both extremum points in the interval
H x and simultaneously to increase the x-span of the intersection set I−∩Hx .
Thus, the transition to the measurement dm (ti ) is implemented.

Consider now Case C2. Let us assume that

d ′Gx ′(1Cb).

Denote by d̂m a point of the interval [d (1), d (2)] that is the nearest to d ′. Let
x̃ be the largest value of the x-projection of the set I−. Denote

d̃Gx̃(1Ab).

If d̂m⁄ d̃ or if d̂mHd̃ and d̂mGd (1), then assume that

dm (ti )Gd̂m .

If d̂mHd̃ and d̂m≠d (1), then assume that

dm (ti )Gmax{d̃, d (1)}.

Similarly, we construct the game-defined angle measurements using the
formulas for the interval H α .

6. Simulation Results

The coplanar SV-to-DSO approach is simulated in a region with a
mean distance to the Sun of 150 million km. The dynamics is described
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by the Kepler equations (16)–(17). The Sun gravitational constant is KG

1.324948B1011 km3 sec−2. The following numerical data are given.
The nominal initial distance between the SV and DSO in the relative

system is 5801.3 km. The uncertainty set of the initial DSO positions in the
relative coordinates z, x is

BG[−10 km, 10 km]B[5301.3 km, 6301.3 km].

The nominal value of the relative velocity is −58.0 km sec−1. The uncertainty
set of the initial DSO velocity is

DG[−0.1 km sec−1, 0.1 km sec−1]B[−59.0 km sec−1, −57.0 km sec−1].

The sets, B, D correspond to the data obtained from the outer aiming infor-
mational system. More accurate information is unavailable to the SV
onboard control system prior to the beginning of the homing process.

For the mentioned initial conditions, the constant ν, which bounds the
fictitious control in the auxiliary system (7), is 0.005 m sec−2. The time step
of the discrete control scheme is hG0.5 sec. The impulse control resource
is µG1000 m sec−1. The constant µ1G0.25 m sec−1, and the constant µ2G

7.5 m sec−1.
The time step of the angle of vision measurements coincides with h.

The maximal (in modulus) value of the error in the angle of vision measure-
ment is aG0.0002 rad (0.0115 deg). If the distance meter operates, the dis-
tance is measured throughout the homing process with the time step 4hG
2 sec. The maximal value of the relative error in the distance measurement
is bG0.05, namely, 5 percent.

The number of x-sections in the initial IS is equal to 29. In the IS
construction procedures, the threshold on the longitudinal distance is (G

5 km. The control ceases when the IS drops completely below the level (
along the coordinate x.

The true miss distance during the homing process is calculated as the
minimal distance between the SV and DSO centers of mass.

Figure 3 shows the control processes. The initial relative state is
zG−8 km, xG5801.3 km; the initial relative velocity is VzG0, VxG

−58.0 km sec−1. In this run, the distance measurements are absent.
Depending on the time t, the curves of the measured and true vision angles,
current angular velocity, and current impulse control are represented.
Figure 3a corresponds to the variant of random generation of the angle of
vision measurements. Figure 3b represents the game method of the measure-
ment elaboration. The relative distance is 2.8 m in the case of the random
disturbance. For the game case, the miss distance is 6.7 m. In the first case,
the impulse control expenditure was 214.7 m sec−1, in the second case, it was
552.2 m sec−1.
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Fig. 3a. Simulation results; case of random disturbances.
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Fig. 3b. Simulation results; case of game disturbances.
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Fig. 4a. Informational sets in the final stage of homing; case of random disturbances.

Figure 4 demonstrates the dynamics of the IS in the final stage of the
SV-to-DSO approach. Here, I− denotes the IS obtained at the time instant
tG90.5 sec before the measurement occurs, Hα is the uncertainty set corre-
sponding to the measurement αm (90.5), I is the IS after taking into account
the measurement. It is seen that the span of the set I decreases in both the
coordinates α and ω with respect to the span of the set I−. Note also that,
for the random error variant (Fig. 4a), the total size of the IS is smaller than
the size of the IS under the game error variant (Fig. 4b).
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Fig. 4b. Informational sets in the final stage of homing; case of game disturbances.

The effectiveness of the control method Us is estimated via statistical
simulation. It is carried out as follows. Take some subsets B0, D0 of the
initial uncertainty sets B, D and fix the method of construction of the infor-
mational error. Further, we simulate the SV-to-DSO approach a representa-
tive number of times. In each run, we perform the dissipation of the initial
coordinates and velocities in the sets B0, D0 by means of the random number
generator with the uniform distribution. In each run, the values of the true
miss distance and impulse control expenditure are obtained. Using the set
of simulation runs, we obtain the integral probability distribution law of
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the miss distance. The expenditure of the impulse control is described by its
integral probability distribution law. These distribution laws characterize
the effectiveness of the Us control method for initial states and velocities
from the sets B0 and D0. Note that the sets B0 and D0 are not known in the
SV onboard control system and cannot be used there. The control system
is aware of only the sets B and D.

Figure 5 represents the results of the statistical simulation for the case
when

B0G[−1.0 km, 1.0 km]B[5701.3 km, 5901.3 km],

D0G[−0.1 km sec−1, 0.1 km sec−1]B[−58.1 km sec−1, −57.9 km sec−1].

Thus, the true dissipation is implemented around the initial state (zG0 km,
xG5801.3 km) and the initial velocity (VzG0 km sec−1, VxG−58.0 km sec−1).
The integral probability laws were constructed using 50 simulation runs of
the SV-to-DSO homing process.

The number 1 [3] marks the curves which correspond to the simulation
without distance measuring and under the random [game] error in the angle
of vision measurements. The number 2 [4] marks the results obtained under
the random [game] errors in the relative distance and angle of vision
measurements. It is seen that, for the given value of the error in the relative
distance measurements, the operation of the relative distance meter does
not give essential improvement of the results.

7. Conclusions

In this paper, we considered the linear problem of pursuit in the plane.
The problem originates from model formulations and investigations of cer-
tain problems of control and homing processes in outer space under incom-
plete information conditions. In the case under consideration, a pursuer has
limited information about an evader. Data available to the pursuer are
based on a sequence of measurements with errors. The latter obey certain
geometric constraints.

The new approach introduced in the paper is that an informational set
is used as the generalized characteristics, which substitutes the exact phase
state unknown to the pursuer. Within the simplifications arising from the
peculiarities of the problem discussed, the informational set represents the
totality of all phase point-states that are consistent with the history of the
observation-control process. The feedback control method that constructs
a control as a function of the current informational set has been elaborated.
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Fig. 5. Statistical simulation results; distribution laws of the miss distance and control
expenditure.
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To show its advantages, we apply an elaborated method of control to
the problem of the SV homing toward an uncontrolled DSO. After the
transition to relative coordinates, the nonlinear terms in the dynamic equa-
tions become small and are replaced by an uncertain vector parameter
bounded in modulus. This uncertain parameter is interpreted as the fic-
titious evader control, and it is taken into account when building the infor-
mational set. The suggested method of the pursuer control is tested in the
original nonlinear problem by applying both random disturbances and
game informational disturbances.
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