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1. INTRODUCTION

The simplest model description of dynamics in the theory of differential games is given by
a dynamics of the form

ẋ = p + q, p ∈ P, q ∈ Q.

Here the right-hand side does not contain the state variable x, and the state velocity ẋ is defined
only by the controls p and q of the first and second players; moreover, the constraints P and Q are
independent of time. In the monograph [1, pp. 22, 45 of the Russian translation], games with such
dynamics were referred to as games with simple motions.

In numerical methods of the theory of differential games, the dynamics of simple motions nat-
urally appears for the local approximation of a linear or nonlinear dynamics in the case where
the possibilities of the players are “frozen” with respect to time or space variables. The actions
corresponding to the next step of an iterative procedure used for finding the value

function of a game are performed in the framework of the dynamics of simple motions.
For example, one important class of differential games consists of games with linear dynamics,

fixed terminal time, and continuous terminal payoff function. For such games, there exists a passage
to new coordinates [2, pp. 159–161; 3, pp. 89–91], which has the meaning of the prediction of the
state variable for the terminal time in view of the “free” motion of the system under zero control
influences of the players. The passage is performed with the use of the Cauchy matrix of the original
system. The right-hand side of the new system does not contain the state variable, but the controls
of the players have time-dependent coefficients.

For the numerical construction of level sets of the value function, the part of the time axis lying
to the left of the terminal time is divided with some increment, and the coefficients of the dynamics
are frozen on each partition interval [4, 5]. The dynamics of simple motions is thereby obtained
at each step. By determining a level set of the value function and by moving backwards in time
from the terminal time, one recomputes the resulting set on each partition interval with the use of
a game with simple motions. Then one passes to the limit by letting the partition increment tend
to zero. For an appropriately chosen recomputation operator (at one step), the limit set coincides
with the level set (the Lebesgue set) of the value function.

For an efficient implementation of the described scheme, it is important to appropriately choose
the operator that is used for the passage in the framework of a single step of the backward procedure.
It is desired that the operator has the semigroup property: for the dynamics frozen on a selected
interval, the introduction of additional partition points does not change the result.
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SEMIGROUP PROPERTY OF THE PROGRAM ABSORPTION OPERATOR 1367

In the present paper, we consider the operator that is referred to in the theory of differential
games as the program absorption operator [2, p. 122]. In games with simple motion, its semigroup
property was earlier proved [6] for the case in which the operator is applied to a convex set. In the
present paper, for problems on the plane, we state and prove sufficient conditions under which
the semigroup property also holds in the nonconvex case.

The obtained results can be used for the development and justification of numerical methods in
the theory of differential games.

2. STATEMENT OF THE PROBLEM

Consider the conflict-control system with simple motions [1, pp. 22, 45 of the Russian translation]

dx

dt
= p + q, p ∈ P, q ∈ Q, x ∈ R

n, (1)

where t is time and P and Q are convex compact sets in R
n. Let M be a compact set in R

n.
We introduce the program absorption operator [2, p. 122; 6; 7]

Tε(M) := (M − εP )
∗
− εQ, ε > 0, M ⊂ R

n.

Here we have used the operations of algebraic sum

A + B = {d : d = a + b, a ∈ A, b ∈ B}

and the geometric difference (the Minkowski difference) [7; 8, p. 203]

A
∗
− B := {d : d + B ⊆ A}.

In addition, we define the operator with multiple recomputation [6]

˜Tε(M) :=
⋂

ω=(ε1,...,εm)
|ω|=ε

Tε1(Tε2(. . . Tεm
(M) . . .)).

Here ω is the symbol of the partition of the interval [0, ε]. The intersection is taken over all finite
partitions.

The action of the operators Tε and ˜Tε on a set M coincides if the operator Tε has the semigroup
property with respect to the set M , i.e., if the relation

Tε1+ε2(M) = Tε1(Tε2(M)) (2)

holds for all ε1, ε2 > 0 such that ε1 + ε2 ≤ ε.
The problem is to impose conditions on the sets M , P , and Q and the range of ε1 and ε2 ensuring

the validity of relation (2).
The semigroup property of the operator Tε was analyzed in [6]. It was shown that the semigroup

property holds for a convex set M .
One application of the semigroup property of the operator Tε is the following. Consider a two-

person zero-sum game with dynamics (1), fixed terminal time ϑ, and payoff function J(x(·)) =
ϕ(x(ϑ)), where ϕ is a continuous function in R

n. Let the first player minimize the value of J , and
let the second player maximize it. Then the set of states at the initial time t = 0 for which the
game value does not exceed c coincides [2, pp. 76, 77; 6; 9, p. 209] with the set ˜Tϑ(Mc), where

Mc = {x ∈ R
n : ϕ(x) ≤ c}.

In the case of the semigroup property, we have Tϑ(Mc) = ˜Tϑ(Mc).
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1368 KAMNEVA, PATSKO

3. ANALYSIS OF THE OPERATOR Tε

Note the following three obvious properties.
1. Tε(M) =

⋂

q∈Q(M − ε(P + q)).
2. The inclusion x ∈ Tε(M) is equivalent to the relation (x + ε(P + q)) ∩ M �= ∅, q ∈ Q.
3. The condition x /∈ Tε(M) is equivalent to the existence of a q ∈ Q such that

(x + ε(P + q)) ∩ M = ∅.

The following two assertions were proved in [6].

Lemma 1. The inclusion
Tε1(Tε2(M)) ⊆ Tε1+ε2(M) (3)

holds for all ε1, ε2 > 0.

Proof. Let x ∈ Tε1(Tε2(M)). Consequently, x + ε1Q ⊆ Tε2(M)− ε1P ; i.e., for each q ∈ Q, there
exists a p1 ∈ P such that x + ε1q + ε1p1 ∈ Tε2(M).

By taking into account the definition of the set Tε2(M), we find a p2 ∈ P such that

z := (x + ε1q + ε1p1) + ε2q + ε2p2 ∈ M.

Set p∗ = (ε1p1 + ε2p2)/(ε1 + ε2). By virtue of the convexity of P , the inclusion p∗ ∈ P holds.
We have

x + (ε1 + ε2)(p∗ + q) = z ∈ M.

Therefore, for each q ∈ Q, there exists a p∗ ∈ P such that x+(ε1+ε2)(p∗+q) ∈ M . Consequently,
x ∈ Tε1+ε2(M). The proof of the lemma is complete.

Lemma 2. Let M be a convex set. Then for each ε > 0, the operator Tε has the semigroup
property with respect to the set M ; i.e., relation (2) holds for all ε1, ε2 > 0, ε1 + ε2 ≤ ε.

Proof. By Lemma 1, it remains to prove the inclusion

Tε1+ε2(M) ⊆ Tε1(Tε2(M)).

Let x ∈ Tε1+ε2(M). Then x + (ε1 + ε2)Q ⊆ M − (ε1 + ε2)P ; i.e., for each q1 ∈ Q, there exists
a p1 ∈ P such that z1 := x + (ε1 + ε2)(p1 + q1) ∈ M .

Let us prove the inclusion
x + ε1(p1 + q1) ∈ Tε2(M). (4)

Indeed, for each q2 ∈ Q, there exists a p2 ∈ P such that

z2 := x + (ε1 + ε2)(p2 + q2) ∈ M.

By taking into account the convexity of the set M , we have

x + ε1(p1 + q1) + ε2(p2 + q2) = (ε1z1 + ε2z2)/(ε1 + ε2) ∈ M.

Therefore, the inclusion (4) holds. Consequently, x ∈ Tε1(Tε2(M)). The proof of the lemma is
complete.

In addition, we need three lemmas stated and proved below. Lemma 3 justifies inequality (6),
which should be necessarily true, in particular, if relation (2) holds. A similar inequality is used in
Theorems 1 and 2 as one of the assumptions. In Lemma 4, the case of a convex set M is considered;
therefore (by Lemma 2), the above-mentioned property is necessarily satisfied. The proof is based
on Lemma 3. Lemma 3 is also used in the proof of Lemma 5, which, in turn, is required for the
proof of Theorem 3.

Let �(· ;A) be the support function of a compact set A ⊂ R
n; i.e.,

�(η;A) = max{〈η, x〉 : x ∈ A}, η ∈ R
n.
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Lemma 3. Let ε1, ε2 > 0, let Tε2(M) and Tε1(Tε2(M)) be nonempty sets, let η ∈ R
n, and let

the following relation be satisfied :

�(η;Tε1+ε2(M)) = �(η;Tε1(Tε2(M))). (5)

Then
�(η;Tε1+ε2(M)) + ε1(min

p∈P
〈p, η〉 + max

q∈Q
〈q, η〉) ≤ �(η;Tε2(M)). (6)

Proof. Since Tε1(Tε2(M)) ⊆ Tε1+ε2(M), it follows that Tε1+ε2(M) �= ∅. From the definition of
the set Tε1(Tε2(M)), we have the inclusion

Tε1(Tε2(M)) + ε1Q ⊆ Tε2(M) − ε1P.

Consequently,

�(η;Tε1(Tε2(M))) + ε1 max
q∈Q

〈q, η〉 ≤ �(η;Tε2(M)) + ε1 max
p∈P

〈−p, η〉.

Hence we obtain inequality (6) with regard of relation (5) and the relation maxp∈P 〈−p, η〉 =
−minp∈P 〈p, η〉. The proof of the lemma is complete.

Lemma 4. Let M be a convex set , let ε1, ε2 > 0, and let Tε2(M) and Tε1+ε2(M) be nonempty
sets. Then inequality (6) is satisfied for each η ∈ R

n.

Proof. Since M is a convex set, it follows from Lemma 2 that the sets Tε1+ε2(M) and Tε1(Tε2(M))
coincide. Consequently, relation (5) holds. By taking into account Lemma 3, we obtain inequal-
ity (6). The proof of the lemma is complete.

Lemma 5. Suppose that η ∈ R
n, η �= 0, and there exists a z∗ ∈ M such that the intersection

M ∩ Π∗ of the set M with the half-space Π∗ = {x ∈ R
n : 〈x − z∗, η〉 ≤ 0} is convex and has

a nonempty interior.
Then there exists an ε∗ > 0 such that the set Tε(M) is nonempty set for each ε ∈ [0, ε∗] and the

relation
�(−η;Tε1+ε2(M)) + ε1(min

p∈P
〈p,−η〉 + max

q∈Q
〈q,−η〉) ≤ �(−η;Tε2(M)) (7)

holds for arbitrary ε1, ε2 > 0, ε1 + ε2 ≤ ε∗.

Proof. 1. Let μ∗ := 〈z∗,−η〉. We have μ∗ < �(−η,M). Take an arbitrary μ ∈ (μ∗, �(−η,M))
and set Πμ := Π∗ − (μ − μ∗)η/‖η‖.

Since the interior of the intersection M ∩Πμ is nonempty (because M ∩Π∗ is a convex set with
a nonempty interior), we have

Tε(M) ∩ Πμ �= ∅ (8)

for sufficiently small ε > 0. Therefore, there exists an ε∗1 > 0 such that relation (8) holds for
all ε ∈ [0, ε∗1].

Let α := minp∈P minq∈Q〈p + q,−η〉. Take a number ε∗2 > 0 such that εα ≥ μ∗ − μ, ε ∈ (0, ε∗2].
Since μ∗ − μ < 0, it follows that each ε∗2 > 0 can be chosen for α ≥ 0; otherwise, we choose
a sufficiently small ε∗2 > 0.

Set ε∗ = min{ε∗1, ε∗2}. (Therefore, ε∗ depends on the choice of μ.)
2. Let ε ∈ [0, ε∗]. Let us show that

Tε(M) ∩ Πμ ⊆ Tε(M ∩ Π∗). (9)

Let x ∈ Tε(M) ∩ Πμ, q ∈ Q. We have x + εq ∈ M − εP and 〈x,−η〉 ≥ μ.
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It follows from the left inclusion that there exists a p∗ ∈ P such that x+εq+εp∗ ∈ M . By virtue
of the right inequality, we have

−〈x,−η〉 + μ∗ ≤ −μ + μ∗ ≤ εα ≤ ε〈q + p∗,−η〉.

Hence it follows that 〈x + εq + εp∗,−η〉 ≥ μ∗; i.e., x + εq + εp∗ ∈ Π∗. Therefore,

x + εq + εp∗ ∈ M ∩ Π∗

and consequently, x + εq ∈ (M ∩ Π∗) − εP . Since q ∈ Q has been chosen arbitrarily, we have

x ∈
⋂

q∈Q

((M ∩ Π∗) − ε(P + q)) = Tε(M ∩ Π∗).

The proof of the inclusion (9) is complete.
3. Let ε1 + ε2 ∈ [0, ε∗]. By virtue of relation (8), Tε2(M) and Tε1+ε2(M) ∩ Πμ are nonempty

sets. By taking into account the inclusion (9), the convexity of the set M ∩Π∗, Lemma 2, and the
monotonicity of the operator Tε, we obtain the relations

Tε1+ε2(M) ∩ Πμ ⊆ Tε1+ε2(M ∩ Π∗) = Tε1(Tε2(M ∩ Π∗)) ⊆ Tε1(Tε2(M)).

Hence it follows that Tε1(Tε2(M)) �= ∅ and

�(−η;Tε1+ε2(M) ∩ Πμ) ≤ �(−η;Tε1(Tε2(M))). (10)

Since Πμ is a half-space with the outward normal η and the intersection Tε1+ε2(M) ∩ Πμ is
nonempty, we have �(−η;Tε1+ε2(M)) = �(−η;Tε1+ε2(M) ∩ Πμ). By taking into account inequal-
ity (10), we obtain

�(−η;Tε1+ε2(M)) ≤ �(−η;Tε1(Tε2(M))).

On the other hand, by Lemma 1, we have the opposite inequality. Therefore,

�(−η;Tε1(Tε2(M))) = �(−η;Tε1+ε2(M)).

By using Lemma 3, hence we obtain the desired inequality (7). The proof of the lemma is complete.

4. SEMIGROUP PROPERTY OF THE OPERATOR Tε

FOR NONCONVEX SETS ON THE PLANE

We consider the case of the plane R
2. A polygon is defined as a part of the plane bounded by

a closed polyline without self-intersections. We assume that the polyline has finitely many links.
We assume that the set P is either a nondegenerate segment or a convex polygon. The sets M

and Q are compact sets on a plane; in addition, Q is a convex set.
Let V be the set of unit inward normals to the sides of P . If P is a segment, then the set V is

formed by two oppositely directed vectors orthogonal to the segment P .
For a compact set A ⊂ R

2, we define the intersection of half-planes

˜Π(A) :=
⋂

ν∈V

{x ∈ R
2 : 〈x,−ν〉 ≤ �(−ν;A)}.

We have A ⊂ ˜Π(A). If P is a segment, then ˜Π(A) is a closed strip; but if P is a polygon, then
˜Π(A) is a convex compact set.

Let P be the set of vertices of a segment or polygon P . For a vertex p ∈ P, we define the pencil
of unit vectors

N (p) := {(p − x)/‖p − x‖ : x ∈ P\{p}}.
If P is a segment, then it has two vertices, and the set N (p) is a singleton.

For the ray with origin at a point a ∈ R
2 and direction along a vector η ∈ R

2, we set l(a, η) :=
{a + αη : α ≥ 0}.
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Lemma 6. Let ε1, ε2 > 0 be numbers such that the sets Tε2(M) and Tε1+ε2(M) are nonempty
and the following conditions are satisfied.

(A1) If x ∈ R
2, ε > 0, (x + εP )∩ Tε2(M) = ∅, and (x + εP )∩ ˜Π(Tε2(M)) �= ∅, then there exists

a p∗ ∈ P such that l(x + εp∗, η) ∩ Tε2(M) �= ∅, η ∈ N (p∗).
(A2) If x ∈ R

2, ε > 0, p ∈ P, (x + εP ) ∩M = ∅, and for each η ∈ N (p), there exists an αη > 0
such that (x + εP + αηη) ∩ M �= ∅, then l(x + εp,−η) ∩ M = ∅, η ∈ N (p).

(A3) The inequality

�(−ν;Tε1+ε2(M)) + ε1(min
p∈P

〈p,−ν〉 + max
q∈Q

〈q,−ν〉) ≤ �(−ν;Tε2(M)) (11)

holds for each ν ∈ V.
Then relation (2) is satisfied for the considered values ε1 and ε2.

Proof. Suppose that relation (2) fails. Then, by taking into account Lemma 1, we have Y :=
Tε1+ε2(M)\Tε1 (Tε2(M)) �= ∅.

Take a y ∈ Y . By virtue of the property 3 of the operator Tε, there exists a q1 ∈ Q such that

(y + ε1(P + q1)) ∩ Tε2(M) = ∅. (12)

The set Tε2(M) is compact. Let ˜Π := ˜Π(Tε2(M)) and G1 := y + ε1(P + q1).
I. Suppose that

G1 ∩ ˜Π �= ∅. (13)

(a) We prove the existence of a q2 ∈ Q such that

(G1 + ε2(P + q2)) ∩ M = ∅. (14)

By relations (12) and (13) and condition (A1) (for x = y+ε1q1 and ε = ε1), there exists a p∗ ∈ P
ensuring the validity of the relation

l(y + ε1(p∗ + q1), η) ∩ Tε2(M) �= ∅, η ∈ N (p∗). (15)

For brevity, set a∗ = y + ε1(p∗ + q1). Since a∗ ∈ G1 and relation (12) is valid, we have a∗ /∈ Tε2(M),
and there exists a control q2 ∈ Q such that

(a∗ + ε2(P + q2)) ∩ M = ∅. (16)

By virtue of relation (15), for each η ∈ N (p∗), there exists an αη > 0 such that a∗+αηη ∈ Tε2(M).
This, together with property 2 of the operator Tε, implies that, for each η ∈ N (p∗), there exists
an αη > 0 such that

(a∗ + αηη + ε2(P + q2)) ∩ M �= ∅. (17)

By virtue of relations (16) and (17) and condition (A2) (for x = a∗ + ε2q2, ε = ε2, and p = p∗),
we have

l(a∗ + ε2q2 + ε2p∗,−η) ∩ M = ∅, η ∈ N (p∗). (18)

Since the representation

z + ε2(p + q2) = a∗ + ε2(p∗ + q2) − η∗, η∗ := (a∗ − z) + ε2(p∗ − p), η∗/‖η∗‖ ∈ N (p∗),

holds for arbitrary z ∈ G1 and p ∈ P , it follows from relation (18) that (z + ε2(P + q2)) ∩ M = ∅

for each z ∈ G1. Consequently, condition (14) is satisfied.
(b) Let q̃ = (ε1q1 + ε2q2)/(ε1 + ε2). Then

y + (ε1 + ε2)(P + q̃ ) = y + ε1(P + q1) + ε2(P + q2) = G1 + ε2(P + q2).
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By virtue of relation (14), we have (y + (ε1 + ε2)(P + q̃ )) ∩ M = ∅. By using property 3 of the
operator Tε, we obtain y /∈ Tε1+ε2(M), and this contradicts the choice of y in the set Y ⊆ Tε1+ε2(M).

Therefore, assumption (13) fails.
II. Now suppose that G1 ∩ ˜Π = ∅. We have

G1 ⊆ R
2\˜Π =

⋃

ν∈V

{x ∈ R
2 : 〈x,−ν〉 > �(−ν;Tε2(M))}.

Since G1 is a polygon such that V is the set of outward normals to its sides, it follows that there
exists a ν0 ∈ V such that

〈z,−ν0〉 > �(−ν0;Tε2(M)), z ∈ G1. (19)

In addition, by virtue of the inclusion y ∈ Tε1+ε2(M), we have the inequality

〈y,−ν0〉 ≤ �(−ν0;Tε1+ε2(M)). (20)

Let
p0 ∈ Arg max

p∈P
〈p, ν0〉, z0 = y + ε1(p0 + q1).

Since z0 ∈ G1, it follows from inequalities (19) and (20) and the relations

〈p0,−ν0〉 = min
p∈P

〈p,−ν0〉, 〈q1,−ν0〉 ≤ max
q∈Q

〈q,−ν0〉

that
�(−ν0;Tε2(M)) < 〈z0,−ν0〉 = 〈y,−ν0〉 + ε1〈p0 + q1,−ν0〉

≤ �(−ν0;Tε1+ε2(M)) + ε1(min
p∈P

〈p,−ν0〉 + max
q∈Q

〈q,−ν0〉),

which contradicts inequality (11).
Therefore, the assumption on the failure of relation (2) leads to a contradiction. The proof of

the lemma is complete.
A set A is said to be arcwise connected [10, vol. 1, p. 92] (or, briefly, connected) if two arbitrary

point of it can be joined by a continuous curve lying in the set A.
In the case in which P is a nondegenerate segment, by lP (x) we denote the line passing through

the point x ∈ R
2 and parallel to the segment P .

Theorem 1. Let P be a nondegenerate segment , and let the following conditions be satisfied.
(T1.1) The intersection lP (x) ∩ M (if it is nonempty) is a segment for any x ∈ R

2.
(T1.2) ε1, ε2 > 0 are numbers such that the sets Tε2(M) and Tε1+ε2(M) are nonempty , the set

Tε2(M) is connected , and

�(±ν;Tε1+ε2(M)) + ε1(〈p0,±ν〉 + max
q∈Q

〈q,±ν〉) ≤ �(±ν;Tε2(M)), (21)

where p0 ∈ P is an arbitrarily chosen point and ν is a nonzero vector orthogonal to the segment P .
Then relation (2) holds for the considered numbers ε1 and ε2.

Proof. Let us verify assumptions (A1)–(A3) of Lemma 6.
Note that the set P consists of two elements (the ends of the segment P ), and the set N (p) is

a singleton for any p ∈ P.
(A1) Let x ∈ R

2, ε > 0, P1 = x + εP , P1 ∩ Tε2(M) = ∅, and P1 ∩ ˜Π(Tε2(M)) �= ∅. Since the set
P1 is a segment parallel to P and the set ˜Π(Tε2(M)) is a strip parallel to P , we have the inclusion
P1 ⊂ ˜Π(Tε2(M)). Since Tε2(M) is a connected set, it follows that there exists a p∗ ∈ P such that
l(x + εp∗, η∗) ∩ Tε2(M) �= ∅ and N (p∗) = {η∗}. Consequently, condition (A1) is satisfied.
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(A2) Suppose that x ∈ R
2, ε > 0, P1 = x + εP , p ∈ P, N (p) = {η}, P1 ∩ M = ∅, and there

exists an αη > 0 such that (P1 + αηη) ∩ M �= ∅. Then l(x + εp, η) ∩ M �= ∅. We have

lP (x + εp) = l(x + εp, η) ∪ l(x + εp,−η), P1 ⊂ l(x + εp,−η).

Since the intersection lP (x+εp)∩M is connected, we have l(x+εp,−η)∩M = ∅; i.e., condition (A2)
is satisfied as well.

Condition (A3) in Lemma 6 is satisfied as well by virtue of inequality (21). The proof of the
theorem is complete.

A set A ⊂ R
2 is said to be simply connected [10, vol. 2, p. 281] if any continuous mapping of

a circle into A is homotopic to some point in A. From the geometric viewpoint, this implies the
absence of “holes” in the set A.

Set ΠM (x, ν) := {z ∈ M : 〈z − x, ν〉 ≤ 0}, x ∈ R
2, ν ∈ V.

Theorem 2. Let P be a convex polygon, and let the following conditions be satisfied.
(T2.1) M is a simply connected set , and ΠM(x, ν) is a connected set for arbitrary x ∈ R

2

and ν ∈ V.
(T2.2) ε1, ε2 > 0 are numbers such that Tε2(M) and Tε1+ε2(M) are nonempty sets, Tε2(M) is

a connected set , and inequality (11) is satisfied for each ν ∈ V.
Then relation (2) holds for the considered numbers ε1 and ε2.

Proof. Let us verify assumptions (A1)–(A3) of Lemma 6.
(A1) Let x ∈ R

2, ε > 0, P1 = x + εP , P1 ∩ Tε2(M) = ∅, and

P1 ∩ ˜Π(Tε2(M)) �= ∅. (22)

Let us prove the existence of a p∗ ∈ P such that

l(x + εp∗, η) ∩ Tε2(M) �= ∅, η ∈ N (p∗). (23)

Suppose the contrary: for each p ∈ P, there exists an η ∈ N (p) such that

l(x + εp, η) ∩ Tε2(M) = ∅. (24)

The set P1 is a convex polygon. Therefore,

P1 =
⋂

ν∈V

Π1(ν), Π1(ν) := {z ∈ R
2 : 〈z, ν〉 ≤ �(ν, P1)}.

By virtue of relation (24) and the connectedness of the set Tε2(M), there exists a ν∗ ∈ V such that

Π1(ν∗) ∩ Tε2(M) = ∅ (25)

(see Fig. 1). Let Π2 := {z ∈ R
2 : 〈z,−ν∗〉 ≤ �(−ν∗;Tε2(M))}. By taking into account rela-

tion (25), we obtain Π1(ν∗) ∩ Π2 = ∅. Since P1 ⊂ Π1(ν∗) and ˜Π(Tε2(M)) ⊂ Π2, it follows that
P1 ∩ ˜Π(Tε2(M)) = ∅, which contradicts assumption (22). Therefore, the proof of relation (23) is
complete.

(A2) Suppose that x ∈ R
2, ε > 0, P1 = x + εP , p ∈ P,

P1 ∩ M = ∅, (26)

and for each η ∈ N (p), there exists an αη > 0 such that

(P1 + αηη) ∩ M �= ∅. (27)
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Fig. 1.

Fig. 2.

Let us show that
l(x + εp,−η) ∩ M = ∅, η ∈ N (p). (28)

Let p± be the vertices of the polygon P adjacent to the vertex p (see Fig. 2). We have p+ �= p−.
To be definite, assume that the vertices p−, p, and p+ are passed in counterclockwise direction. Set
b = x + εp and η± = p− p±, and let ν± be the outward normals to the sides of P with endpoints p
and p±.

We organize the proof of relation (28) into two stages. At the first stage, we prove an auxiliary
assertion. At the second stage, we assume that relation (28) fails and obtain a contradiction with
the simple connectedness of the set M .

Stage I. Let us show that there exists a continuous curve γ (Fig. 3) joining some points
e+ ∈ l(b, η+) and e− ∈ l(b, η−) and such that

γ ⊂ (b + K) ∩ M, (29)

where K := {αη : η ∈ N (p), α ≥ 0}.
Let B± = {z + αη± : α > 0, z ∈ P1}\P1. By using relation (27) for η = η±/‖η±‖, we obtain

B± ∩ M �= ∅. Take arbitrary points b± ∈ B± ∩ M . Since B+ ∩ B− = ∅, we have b+ �= b−.
(a) Suppose that

Arg min
z∈P1

〈z, ν+〉 = Arg min
z∈P1

〈z, ν−〉 =: E.

In this case, since P1 is a convex set, it follows that E is a singleton; i.e., E = {ẽ }, and ẽ is a vertex
of the polygon P1 (see Fig. 3 a).

Let ν̃± be the outward normals of the sides of the polygon P1 adjacent to the vertex ẽ; moreover,
the rotation from ν̃− to ν̃+ by an angle less than π is counterclockwise. Set

˜K := {α(z − ẽ ) : α ≥ 0, z ∈ P1}
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Fig. 3.

and note that ˜K ⊂ K, ∂ ˜K ∩ ∂K = {0}, and

b± ∈ ΠM (ẽ, ν̃∓). (30)

In addition, by using condition (T2.1), we find that the set ΠM (ẽ, ν̃±) is connected.
Let η̃ ∈ ˜K. By using relation (27) for η = η̃/‖η̃ ‖, we find that there exists an α̃ > 0 such that

(P1 + α̃η̃ ) ∩ M �= ∅. Take a c ∈ (P1 + α̃η̃ ) ∩ M . Note that

c ∈ ΠM (ẽ, ν̃±). (31)

The following cases are possible: (i) c ∈ (B+ ∪ B−); (ii) c /∈ (B+ ∪ B−).
(i) Let c ∈ B±. By taking into account the inclusions (30) and (31) and the connectedness

of the set ΠM (ẽ, ν̃±), we find that there exists a continuous curve γ1 ⊂ ΠM (ẽ, ν̃±) joining the
points c and b∓. The points c and b∓ in the set ΠM (ẽ, ν̃±) are separated by the set P1 ∪ (b + K).
By virtue of relation (26), from the curve γ1, one can extract the desired continuous curve γ without
self-intersections, which lies in the set b + K and joins some points e+ ∈ l(b, η+) and e− ∈ l(b, η−).

(ii) Let c /∈ (B+∪B−). In this case, the point c belongs to the interior of the set b+K. We have
c, b+ ∈ ΠM (ẽ, ν̃−) and c, b− ∈ ΠM (ẽ, ν̃+). By taking into account the connectedness of the set
ΠM (ẽ, ν̃±), we find that there exists a continuous curve γ1 ⊂ ΠM (ẽ, ν̃+) joining the points c and b+

and a continuous curve γ2 ⊂ ΠM (ẽ, ν̃−) joining the points b− and c. By virtue of relation (26), from
the composite curve γ1γ2, one can extract the desired continuous curve γ without self-intersections
that lies in the set b + K and joins some points e+ ∈ l(b, η+) and e− ∈ l(b, η−).

(b) It remains to consider the case in which

Arg min
z∈P1

〈z, ν+〉 �= Arg min
z∈P1

〈z, ν−〉.

In this case (see Fig. 3 b), there exists a ν̃ ∈ V such that B± ⊂ Π3 := {z ∈ R
2 : 〈z, ν̃〉 ≤ �(ν̃;P1)}.

Since b+, b− ∈ Π3, it follows from condition (T2.1) that there exists a continuous curve γ1 ⊂ Π3 ∩M
joining the points b+ and b−. The points b+ and b− in the half-plane Π3 are separated by the set
P1∪ (b+K). By virtue of relation (26), from the curve γ1 one can single out the desired continuous
curve γ without self-intersections lying in the set b + K and joining some points e+ ∈ l(b, η+) and
e− ∈ l(b, η−).

We have thereby proved the existence of a curve γ with the desired properties.
Stage II. Suppose that relation (28) fails; i.e., there exists an η0 ∈ N (p) such that l(b,−η0) ∩

M �= ∅. Let b0 ∈ l(b,−η0) ∩ M (see Fig. 4).
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Fig. 4.

Let us construct a continuous closed curve without self-intersections that lies in the set M and
surrounds the set P1. We have e+, b0 ∈ ΠM (b, ν+) and e−, b0 ∈ ΠM (b, ν−). By assumption (T2.1),
there exists a continuous curve γ+ ⊂ ΠM (b, ν+) joining the points b0 and e+ and a continuous curve
γ− ⊂ ΠM (b, ν−) joining the points e− and b0. Without loss of generality, one can assume that the
γ± are curves without self-intersections.

The composite curve γ+γγ− ⊂ M is continuous and closed, has no self-intersections, and sur-
rounds the set P1. By taking into account relation (26), we obtain a contradiction with the simple
connectedness of the set M .

Assumption (A3) of Lemma 6 holds by virtue of inequality (11). The proof of the theorem is
complete.

Remark 1. Theorem 1 is stated for the case in which the set P is a nondegenerate seg-
ment, and Theorem 2 is formulated for the case in which the set P is a convex polygon. Condi-
tions (T1.1) and (T2.1) in those theorems are imposed only on the sets M and P , have a geometric
nature, and can readily be verified. Note also that condition (T2.1) is also well posed in the case of
a segment P . One can readily see that if P is a segment and M is connected, then assumption (T1.1)
is equivalent to condition (T2.1).

Remark 2. In the assumptions of Theorems 1 and 2, ε1, ε2 are fixed numbers. To say that the
operators Tε and ˜Tε are equal on some interval of length ε for a given set M (with specific geometric
properties with respect to the set P ), one should require the validity of condition (T1.2) in Theorem 1
[respectively, condition (T2.2) of Theorem 2] for arbitrary ε1, ε2 > 0 such that ε1 + ε2 ≤ ε.

Theorem 3. Let M be a polygon, let P be a nondegenerate segment (respectively , a convex
polygon), and let condition (T1.1) [respectively , condition (T2.1)] be satisfied. Then there exists
an ε̄ > 0 such that the operator Tε̄ has the semigroup property ; i.e., relation (2) holds for arbitrary
ε1, ε2 > 0, ε1 + ε2 ≤ ε̄.

Proof. Note that Tε(M) is a connected set for small values of ε > 0.
Let us separately consider the case of a segment P and the case of a convex polygon P .
1. Let P be a nondegenerate segment, and let ν be a nonzero vector orthogonal to the segment P .

By virtue of condition (T1.1), ΠM (x,±ν) is a connected set for arbitrary x ∈ R
2. Since M is

a polygon, it follows that, for η = ν and η = −ν, one can choose a z∗ ∈ M such that the set
ΠM (z∗, η) is either a triangle or a trapezoid. Then the assumptions of Lemma 5 for η = ±ν hold.
Consequently, there exists an ε̄ > 0 such that the assumptions of Theorem 1 providing the desired
semigroup property hold for ε1 and ε2 satisfying the relation ε1 + ε2 ∈ (0, ε̄].
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2. Let P be a convex polygon, and let V be the set of unit outward normals to the sides of P .
By virtue of condition (T2.1), the set ΠM (x, ν) is connected for arbitrary x ∈ R

2 and ν ∈ V. Since
M is a polygon, it follows that there exists a z∗ ∈ M such that the set ΠM (z∗, ν) is either a triangle
or a trapezoid. Then the assumptions of Lemma 5 for η = ν are satisfied. Consequently, there
exists an ε̄ > 0 such that the assumptions of Theorem 2 ensuring the desired semigroup property
hold for ε1 and ε2 satisfying the relation ε1 + ε2 ∈ (0, ε̄ ]. The proof of the theorem is complete.
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