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INTRODUCTION

Aircraft landing and take-off under wind disturbance are natural examples [1–6] of using modern
methods of mathematical control theory and of the theory of differential games in applied problems.
Nevertheless, one encounters the following difficulty when formulating problems.

An aircraft has four controls: the thrust force, elevator, rudder, and ailerons. The limits of the
possible deviations of the controls from the nominal values are clearly specified. Therefore, when
formulating the mathematical problem of aircraft control, we can validly specify a constraint P on
the vector control action. The constraint on the wind disturbance is not so easy to specify. Even
if we stipulate a disturbance level that is not very high but expect the worst disturbance, then the
predicted result of the control will be inadequate. In the case when a weak wind disturbance is
realized, the result will be acceptable, but the control actions will switch from one limit position
to the other. At the same time, it is clear that a low-level disturbance can be dealt with by using
small deviations of the control actions from the nominal values.

Thus, we deal with a control process on a finite time interval, and the level of the dynamic
disturbance is bounded but not known a priori. Such problems are close to problems on the
suppression by a control system of an external bounded disturbance [7–10]. The difference is
that, in suppression problems, as a rule, an infinite time interval is considered and there are no
constraints on the instantaneous values of the useful control.

Based on the theory of differential games, we proceed as follows. Let us establish some
correspondence between the virtual disturbance level and the level of the control that responds
to it. Let the constraint for the disturbance be characterized by a set Qk, where k ≥ 0 is a
numerical parameter. Assume that the set Qk increases monotonically as k grows. To every value
of k, we also assign a set Pk, which is a constraint on the useful control. This set increases with
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the growth of k ∈ [0, 1] and, for k = 1, coincides with the constraint P , which cannot be violated.
Assume that Pk = P for k ≥ 1.

To every pair Qk, Pk, we assign in the space of t, x (time, phase vector) a stable [11, 12] tube Wk

such that a control chosen from the set Pk can keep the motion within this tube for any disturbance
with values in the set Qk.

Assume that the sets Wk increase monotonically as k grows. Consider the following geometric
interpretation: the system of stable tubes expands with the growth of k, each tube corresponding to
the constraint Pk on the useful control and to the constraint Qk on the disturbance. At the instant t,
we measure the current phase state x(t), identify the index k of the tube Wk on whose boundary
the system is positioned at that instant, and apply on a small time interval the appropriate control
taking a value in set Pk. If the motion leaves the tube Wk, this means that the level of disturbance
on the time interval under consideration was greater than Qk. In this case, on the following time

interval, we will choose a control from the set P
˜k

related to the tube W
˜k
, ˜k > k, on whose boundary

the system is positioned at the initial moment of the time interval. In the case when the motion goes
inside the tube Wk, we apply on the following time interval a control with the level corresponding

to the tube W
˜k
, where ˜k < k, and so on.

It can be said that the level of the control used locally adjusts (adapts) to the level and
“quality” of the acting disturbance. The result obtained in the end of the control process depends
on the structure of the system {Wk} of stable tubes, the maximal level of disturbance, and the
sophistication of its action.

The concept of stable tubes (stable bridges) [11–13] is central to the theory of differential games
developed in N.N. Krasovskii’s school. In particular, this idea underlies the feedback control method
called the extremal aiming method, which guarantees the retention of the motion in a stable tube.
Thus, when creating a control method that would work in the case when the level of a dynamic
disturbance is not known a priori, we can use a well-developed theoretical base and corresponding
numerical methods, in particular, methods of constructing maximal stable bridges.

Let us specify the principal aspects of the practical implementation of the adaptive control
method under consideration: one must have a numerical algorithm for constructing stable tubes,
the stable tubes must be nested into each other, and the required tube must be constructed
simultaneously with the process based on a small number of special stable tubes stored in the
memory.

The simplest algorithms of the numerical construction of maximal stable bridges appear in the
case of game problems with linear dynamics and fixed terminal time [14–20]. Tubes are constructed
by means of a backward time procedure of passing from one t-section to another starting from the
terminal time. In this case, if the terminal set, from which we move back, is taken to be convex,
then all the t-sections will also be convex.

The method of constructing a family of nested stable tubes Wk, k ≥ 0, for problems with linear
dynamics was proposed in [21–23]. It is briefly presented in Section 1. The whole system {Wk} is
generated by two tubes; one of them is included in the system and corresponds to k = 1, and the
other is auxiliary and is not included in the system. An arbitrary tube Wk is defined by means of
linear operations of addition and multiplication by a scalar coefficient of the specified two stable
tubes; only these two tubes must be stored in the memory. The application of the extremal aiming
method for constructing adaptive control in the case of convex sections Wk(t) is rather simple.

The main part of the paper (Sections 2–4) is devoted to applying the method of adaptive control
to the problem of aircraft landing under wind disturbance. The landing process is considered only
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up to the moment of passing the runway threshold. The landing problem with boundary conditions
at the moment of passing the runway threshold was formulated by Kein [1, 24–26]. Boundary
conditions are given in the form of two convex sets. One of them bounds the vertical (longitudinal)
channel in the following coordinates: the vertical deviation from the nominal value, the velocity of
the vertical deviation. The other set bounds the lateral channel in the following coordinates: the
lateral deviation, the velocity of the lateral deviation. Each of the sets specifies the tolerance. If
the tolerance is satisfied, then the final stages of the landing can be carried out successfully (the
descent before touching the runway, the run along the runway on the main wheels, and the run on
all the wheels).

The nominal motion until the moment of passing the runway threshold follows the descending
rectilinear glide path, and the altitude at the passage moment is 15 m. It is reasonable to linearize
the nonlinear dynamics along the nominal motion. The adaptive control is formed based on auxiliary
problems with linear dynamics for the vertical and lateral channels. The predicted moment of
passing the runway threshold is corrected during the process. The generated control is sent to the
nonlinear system of the aircraft dynamics, which models the motion of the aircraft.

When testing the developed method of control, we use the model of a wind microburst from [27].
This paper makes substantial use of papers [6, 26, 28, 29], in which the study of the landing

problem involved a prespecified constraint on the instantaneous values of the wind disturbance. In
those papers, sharp switches of the controls from one extreme position to the other were avoided
by means of purely engineering techniques not encompassed by any universal mathematical idea.
This drawback is overcome in the present paper.

1. ADAPTIVE CONTROL

Let us describe the construction of an adaptive control for linear systems and then apply this
construction to the landing problem.

Consider the following system with linear dynamics:

ż = A(t)z + B(t)u + C(t)v,

z ∈ R
m, t ∈ T, u ∈ P ⊂ R

p, v ∈ R
q.

(1.1)

Here, u and v are vector control actions of the first and second players, P is a convex compact
constraint on the control of the first player, and T = [t0, tf ] is the time interval of the control
process. Assume that the set P contains the origin of the space R

p. The matrix-valued functions A

and C are continuous in t. The matrix-valued function B satisfies the Lipschitz condition on the
interval T . There is no specific constraint on the control v.

The first player aims to bring n selected components of the phase vector of system (1.1) to a
terminal set M at the instant tf . We assume that M is a convex compact set in the space of the
specified n components of the phase vector z. We also assume that M contains some neighborhood
of the origin of this space. Let the origin be the center of the set M . The goal of the first player is
to bring the n specified components of the vector z as close to the center of M as possible.

Let us pass to a system that does not contain the phase vector on its right-hand side:

ẋ = D(t)u + E(t)v,

x ∈ R
n, t ∈ T, u ∈ P ⊂ R

p, v ∈ R
q.

(1.2)
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The passage is carried out ([11, p. 160], [12, pp. 89–91]) by means of the relations

x(t) = Zn,m(tf , t)z(t), D(t) = Zn,m(tf , t)B(t), E(t) = Zn,m(tf , t)C(t),

where Zn,m(tf , t) is a matrix composed of the n lines of the fundamental Cauchy matrix for the
system ż = A(t)z that correspond to the components of the vector z in the space of which the
set M is given. The vector x(t) is the prediction for the instant tf of the selected components of z

along the motion of system (1.1) on the interval [t, tf ] under the controls u = 0, v = 0.
The first player tries to bring the phase vector of system (1.2) to the set M at the terminal

time tf .
The calculations presented below are performed for system (1.2). The constructed adaptive

control U(t, x) as applied to system (1.1) is written in the form U
(

t, Zn,m(tf , t)z
)

.
Denote by S(t) =

{

x ∈ R
m : (t, x) ∈ S

}

the section of the set S ⊂ T × R
n at the instant t ∈ T .

Denote by O(ε) = {x ∈ R
n : |x| � ε} the ball of radius ε in the space R

n centered at the origin.

Stable bridges. On the interval [t0, tf ], we consider the zero-sum differential game with the
terminal set M and geometric constraints P, Q on the players’ controls

ẋ = D(t)u + E(t)v,

x ∈ R
n, t ∈ T, M ⊂ R

n, u ∈ P ⊂ R
p, v ∈ Q ⊂ R

q.
(1.3)

Here, the matrices D(t) and E(t) are the same as in system (1.2). The sets M, P, and Q are
assumed to be convex and compact. They are regarded as parameters of the game.

Let u(·) and v(·) be measurable functions of time with values in the sets P and Q, respectively.
We denote the motion of system (1.3) (and, consequently, of system (1.2)) starting from a point x∗
at an instant t∗ subject to controls u(·) and v(·) by x

(

·; t∗, x∗, u(·), v(·)
)

.
Following [11,12], we define the notions of a stable and maximal stable bridges.
A set W ⊂ T × R

n will be called a stable bridge for system (1.3) and some fixed sets P, Q,
and M if W (tf ) = M and the following stability property is satisfied: for any position (t∗, x∗) ∈ W

and any control v(·) of the second player, the first player can choose his control u(·) so that the
position

(

t, x(t)
)

=
(

t, x(t; t∗, x∗, u(·), v(·))
)

stays in the set W at any instant t ∈ (t∗, tf ]. A set
W ⊂ T × R

n, W (tf ) = M, that is maximal with respect to inclusion and satisfies the stability
property is called a maximal stable bridge.

A maximal stable bridge is [11, 12] a closed set. Its t-sections are convex [12, p. 87] since
system (1.3) is linear and the set M is convex.

Construction of a system of stable bridges. 1◦. Let us choose a set Qmax ⊂ R
q, which is

interpreted as the maximal constraint on the control of the second player that the first player agrees
to regard as “reasonable” when taking system (1.2) to the set M . We assume that the set Qmax

contains the origin of its space. Denote by Wmain the maximal stable bridge for system (1.3)
corresponding to the parameters P = P , Q = Qmax, and M = M . We will call it the main bridge
for brevity.

In addition, we assume that the set Qmax is chosen so that the inclusion

O(ε) ⊂ Wmain(t) (1.4)

holds for some ε > 0 and any t ∈ T . The number ε is assumed to be fixed.
Thus, Wmain is a closed tube in the space T × R

n, which terminates at the instant tf on the
set M . Each of its t-sections Wmain(t) is convex and contains the origin of the space R

n together
with a certain neighborhood.
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2◦. Let us introduce an additional closed tube Wadd ⊂ T × R
n, each section Wadd(t) of which

is the reachable set of system (1.3) at the instant t with the initial set O(ε) taken at the instant t0.
In constructing the tube Wadd, we assume that the first player is absent (u ≡ 0), and the control
of the second player is subject to the constraint Qmax. It is easy to see that Wadd is the maximal
stable bridge for system (1.3) for

P = {0}, Q = Qmax, M = Wadd(tf ).

For any t ∈ T , the section Wadd(t) is convex and the following inclusion holds:

O(ε) ⊂ Wadd(t). (1.5)

3◦. Consider the family of tubes Wk ⊂ T × R
n, k � 0, with the sections Wk(t) defined as

follows:

Wk(t) =

{

kWmain(t), 0 � k � 1,

Wmain(t) + (k − 1)Wadd(t), k > 1.

The sets Wk(t) are compact and convex. For any numbers 0 � k1 < k2 � 1 < k3 < k4, the strict
inclusions

Wk1(t) ⊂ Wk2(t) ⊂ Wk3(t) ⊂ Wk4(t)

hold by virtue of relations (1.4) and (1.5).
In papers [30,31], the following important properties are established. The tube Wk for 0 � k � 1

is the maximal stable bridge for system (1.3) corresponding to the constraint kP on the control of
the first player, constraint kQmax on the control of the second player, and terminal set kM . For
k > 1, the set Wk is a stable bridge (which is, generally speaking, not maximal) for the parameters

P = P, Q = kQmax, M = M + (k − 1)Wadd(tf ).

Thus, we have an expanding system of stable bridges, in which each larger bridge corresponds
to a larger constraint on the control of the second player. This system of bridges is generated by the
two bridges Wmain and Wadd by means of the algebraic operations of addition and multiplication
by a nonnegative numerical parameter.

Feedback control. The adaptive control (t, x) �→ U(t, x) is constructed as follows.
Fix a number ξ > 0.
Consider an arbitrary position (t, x). If |x| ≤ ξ, we set U(t, x) = 0. In the case |x| > ξ, we

find a positive number k∗ defining the bridge Wk∗ whose section Wk∗(t) is at a distance of ξ from
the point x. On the boundary of the set Wk∗(t), we calculate the point x∗ nearest to x. We
have |x∗ − x| = ξ. We specify a vector u∗ ∈ Pk∗ from the extremum condition

(x∗ − x)′D(t)u∗ = max
{

(x∗ − x)′D(t)u : u ∈ Pk∗
}

. (1.6)

Set U(t, x) = u∗.
Thus, the control U is formed by means of the extremal aiming rule, which is widely known in

the theory of differential games [11–13].
We apply the control U in a discrete scheme [11–13] with a time step Δ. The control action

is chosen at the initial point of each interval of length Δ and is held constant to the end of the
interval.

In [23], a theorem on the guarantee provided by the control U was formulated and proved.
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2. MATHEMATICAL MODEL OF AN AIRCRAFT’S DYNAMICS

2.1. The main part of the dynamics. The motion of an aircraft is described by the
following system of differential equations of the 12th order [6, 26, 32, 33]:

ẋg = Vxg,

V̇xg =
[

(p cos σ − qscx) cos ψ cos ϑ + (p sin σ + qscy)(sin ψ sin γ − cos γ cos ψ sinϑ)

+ qscz(sin ψ cos γ + cos ψ sinϑ sin γ)
]

/m,

ẏg = Vyg,

V̇yg =
[

(p cos σ − qscx) sin ϑ + (p sin σ + qscy) cos ϑ cos γ − qscz cos ϑ sin γ
]

/m − g,

żg = Vzg,

V̇zg =
[

(p cos σ − qscx)(− sin ψ cos ϑ) + (p sin σ + qscy)(cos ψ sin γ + sin ψ sin ϑ cos γ)

+ qscz(cos ψ cos γ − sin ψ sinϑ sin γ)
]

/m, (2.1)

ϑ̇ = ωz cos γ + ωy sin γ,

ω̇z =
[

Ixy(ω2
x − ω2

y) − (Iy − Ix)ωxωy + Mz

]

/Iz,

ψ̇ = (ωy cos γ − ωz sin γ)/ cos ϑ,

ω̇y =
[

(Iy − Iz)Ixyωyωz + (Iz − Ix)Ixωxωz + IxMy + IxyMx + Ixyωz(Ixωy − Ixyωx)
]

/J,

γ̇ = ωx − (ωy cos γ − ωz sin γ) tan ϑ,

ω̇x =
[

(Iy − Iz)Iyωyωz + (Iz − Ix)Ixyωxωz + IyMx + IxyMy + Ixyωz(Ixyωy − Iyωx

]

/J.

The phase variables have the following sense: xg, yg, and zg are the coordinates of the aircraft’s
center of mass in the ground coordinate system (see Fig. 1); Vxg, Vyg, and Vzg are the absolute
velocities; ϑ, ψ, and γ are the pitch, yaw, and roll angles; and ωx, ωy, and ωz are the angular
velocities in the bound coordinate system: the x axis is directed along the aircraft’s construction
line, the y axis lies in the symmetry plane and is directed upwards, and the z axis completes the
right-hand triple.

The dynamic pressure q is calculated by the formula

q = ρ̂V 2/2.

The aerodynamic moments are defined by the relations

Mx = qslmx, My = qslmy, Mz = qsbmz.

Fig. 1. Aircraft landing.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Suppl. 1 2010



S118 GANEBNY et al.

The value J is determined in terms of the moments of inertia Ix, Iy, and Ixy:

J = IxIy − I2
xy.

The remaining variables and constants are explained below.
The aircraft is controlled by means of the thrust force p and the deviations δe, δr, and δa of

the elevator, rudder, and ailerons, respectively. Note that the values δe, δr, and δa influence the
aerodynamic coefficients of forces cx, cy, and cz and moments mx, my, and mz. The aerodynamic
coefficients depend also on the angle of attack α the gliding angle β, which are computed by the
following formulas [32, 33]:

α = arcsin
{

[

− ̂Vxg(sin ψ sin γ − cos ψ sin ϑ cos γ) − ̂Vyg cos ϑ cos γ

− ̂Vzg(cos ψ sin γ + sin ψ sin ϑ cos γ)
]

/(̂V cos β)
}

,

β = arcsin
{

[

̂Vxg(sin ψ cos γ + cos ψ sin ϑ sin γ) − ̂Vyg cos ϑ sin γ

+ ̂Vzg(cos ψ cos γ − sin ψ sinϑ sin γ)
]

/̂V
}

.

The wind velocity components wxg, wyg, and wzg influence the components ̂Vxg, ̂Vyg, and ̂Vzg of
the airspeed vector:

̂Vxg = Vxg − wxg, ̂Vyg = Vyg − wyg, ̂Vzg = Vzg − wzg.

2.2. Numerical characteristics of the aircraft. We will use the following numerical data,
which correspond to the Tupolev Tu-154 aircraft:

s = 201 m2, l = 37.55 m, b = 5.285 m,

Ix = 2.5 × 106 kg m2, Iy = 7.5 × 106 kg m2, Iz = 6.5 × 106 kg m2,

Ixy = 0.5 × 106 kgm2, m = 75 × 103 kg, σ = 1.72◦.

Here, m is the mass of the aircraft; s is the wing area; l is the wing span; b is the average
aerodynamic chord; Ix, Iy, Iz, and Ixy are the moments of inertia; and σ is the thrust inclination.
The constants g and ρ, which characterize the acceleration of gravity and the air density, are given
in the form

g = 9.81 m s−2, ρ = 1.207 kgm−3.

2.3. Aerodynamic coefficients. Using [6, 26, 33], we specify formulas for the coefficients of
aerodynamic forces and moments.

The coefficients cx, cy, and cz of aerodynamic forces in system (2.1) should be taken in the
bound coordinate system. They are expressed in terms of the coefficients c̃x, c̃y, and c̃z in the
semibound system by means of the relations

cx = c̃x cos α − c̃y sin α, cy = c̃y cos α + c̃x sin α, cz = c̃z.

In the semibound system, the x axis is directed along the projection of the airspeed onto the aircraft’s
symmetry plane, the z axis coincides with the same axis of the bound system, and the y axis lies
in the symmetry plane and completes the right-hand triple.
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The coefficients in the semibound system are as follows:

c̃x = 0.21 + 0.004α + 0.47 × 10−3α2,

c̃y = 0.65 + 0.09α + 0.003δe,

c̃z = −0.0115β − (0.0034 − 6 × 10−5α)δr.

Here and below, angular values are measured in degrees.
The coefficients mx, my, and mz of aerodynamic moments are specified by the following

expressions. For the moment about the x axis (the aircraft’s construction axis):

mx = mβ
xβ + mr

xδr + ma
xδa + (l/(2̂V ))(π/180)(mx

xωx + my
xωy),

mβ
x = −0.0035 − 0.0001α, mr

x = −0.0005 + 0.00003α,

ma
x = −0.0004, mx

x = −0.61 + 0.004α, my
x = −0.3 − 0.012α.

For the moment about the y axis:

my = mβ
yβ + mr

yδr + ma
yδa + (l/(2̂V ))(π/180)(mx

y ωx + my
yωy),

mβ
y = −0.004 − 0.00005α, mr

y = −0.00135 + 0.000015α,

ma
y = 0, mx

y = 0.015α, my
y = −0.21 − 0.005α.

For the moment about the z axis:

mz = 0.033 − 0.017α − 0.013δe + 0.047δst − 1.29ωz/̂V .

Here, δst is the pitch angle of the tailplane.

2.4. Dynamics of the actuators. Let the change of the thrust force be described by the
relation

ṗ = −kpp + kp(δps + δp), (2.2)

kp = 1 s−1, kp = 3538 N s−1deg−1, δp = −41.3◦,

47◦ ≤ δps ≤ 112◦. (2.3)

Here, δps is the position of the engine controller. Substituting the extreme values δps = 47◦ and
δps = 112◦ into the right-hand side of (2.2), we obtain the stationary values p ≈ 2 × 104 N and
p ≈ 25× 104 N for the equation ṗ = 0. If the initial value of p lies in the range [2× 104, 25× 104],
then the value of p will remain in this range.

We describe the dynamics of the controlling servomechanisms by the following simple equations.
For the elevator:

δ̇e = ke(δes − δe), ke = 4 s−1, (2.4)

|δes| ≤ 10◦; (2.5)

for the rudder:
δ̇r = kr(δrs − δr), kr = 4 s−1, (2.6)

|δrs| ≤ 10◦; (2.7)

for the ailerons:
δ̇a = ka(δas − δa), ka = 4 s−1, (2.8)

|δas| ≤ 10◦. (2.9)

The values δes, δrs, and δas are the control positions of the elevator, rudder, and ailerons.
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2.5. Complete nonlinear system. Adding relations (2.2), (2.4), (2.6), and (2.8) to main
system (2.1), we obtain the differential system in the vector form

ξ̇ = f(ξ, u,w), ξ ∈ R
16, (2.10)

where ξ is the phase vector and the vectors u = (δps, δes, δrs, δas)′ and w = (wxg, wyg, wzg)′ are the
control and disturbance. The control variables (control positions) δps, δes, δrs, and δas are upper
and lower bounded by relations (2.3), (2.5), (2.7), and (2.9).

3. LINEARIZED SYSTEMS FOR THE VERTICAL AND LATERAL CHANNELS:

FORMING THE ADAPTIVE CONTROL

For the application of the adaptive control method presented in Section 1, one should linearize
the aircraft’s nonlinear dynamics about the nominal motion. The nominal motion is the motion
along the rectilinear descending glide path with a constant velocity and without rotation. To
calculate the parameters of the nominal motion, we specify the “average” values of the components
wxg0, wyg0, and wzg0 of the wind velocity along the axes of the ground coordinate system. On the
nominal motion, the gliding angle β0 is assumed to be zero. Initial data also include the glide slope
angle Θ and the nominal value ̂V0 of the airspeed.

Having calculated the parameters of the nominal motion, we linearize nonlinear dynamics (2.10).
The linearized system is virtually decomposed into two subsystems of the vertical and lateral
channels. We neglect the weak mutual influence of the systems. The decomposition of a linearized
system into two subsystems is a standard approach in the aviation engineering practice.

We take the initial data for computing the nominal motion and linearized systems in the form

Θ = 2◦40′, ̂V0 = 72.2 m/s, wxg0 = −5 m/s, wyg0 = wzg0 = 0.

The obtained nominal values are as follows:

Vxg0 = 67.13 m/s, Vyg0 = −3.13 m/s, α0 = 5.42◦, ϑ0 = 2.94◦,

p0 = 124 500 N, δst = −1.26◦, δps0 = 76.5◦.

The values γ0, ψ0, ωx0, ωy0, ωz0, δe0, δr0, δa0, δes0, δrs0, and δas0 are equal to zero.

3.1. The case of the inertialess wind disturbance. The linear system of the vertical
channel is described by the equation

ẋV = AV xV + BV uV + CV wV . (3.1)

Here,

xV = (Δxg, ΔVxg, Δyg, ΔVyg, Δϑ, Δωz, Δδe, Δp/m)′,

uV = (Δδps, Δδes)′, wV = (Δwxg, Δwyg)′.
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Let us give the numerical values of the matrices AV , BV , and CV :

AV =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0 0 0
0 −0.0501 0 −0.0973 −2.6422 0 0.0628 0.9971
0 0 0 1 0 0 0 0
0 0.2409 0 −0.6387 45.2782 0 1.4479 0.0813
0 0 0 0 0 1 0 0
0 0.0003 0 0.0069 −0.5008 −0.5263 −0.3830 0
0 0 0 0 0 0 −4 0
0 0 0 0 0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

BV =
[

0 0 0 0 0 0 0 2.7
0 0 0 0 0 0 4 0

]′
,

CV =
[

0 0.0501 0 −0.2409 0 −0.0003 0 0
0 0.0973 0 0.6387 0 −0.0069 0 0

]′
.

For the lateral channel:
ẋL = ALxL + BLuL + CLwL, (3.2)

where
xL = (Δzg, ΔVzg, Δψ, Δωy, Δγ, Δωx, Δδa, Δδr)′,

uL = (Δδrs, Δδas)′, wL = Δwzg.

The numerical values of the matrices AL, BL, and CL:

AL =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0 0 0
0 −0.0769 −5.5553 0 9.2719 0 −1.4853 0
0 0 0 1.0013 0 0 0 0
0 −0.0129 −0.9339 −0.2588 −0.0883 −0.0303 −0.2456 −0.0460
0 0 0 −0.0514 0 1 0 0
0 −0.0331 −2.3865 −0.9534 −0.2256 −1.4592 −0.2327 −0.6894
0 0 0 0 0 0 −4 0
0 0 0 0 0 0 0 −4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

BL =
[

0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 4

]′
,

CL =
[

0 0.0769 0 0.0129 0 0.0331 0 0
]′

.

Consider the following constraints on the control actions:

|Δδps| ≤ 27
π

180
= 27◦, |Δδes| ≤ 10

π

180
= 10◦ (3.3)

in the vertical channel and

|Δδrs| ≤ 10
π

180
= 10◦, |Δδas| ≤ 10

π

180
= 10◦ (3.4)
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in the lateral channel.
Thus, the linear dynamics is written for each channel (in terms of deviations from the nominal

motion), and constraints on the useful control are specified. For the construction of the adaptive
control, it is also required to specify for each channel the terminal set M and the set Qmax, which
is a “reasonable” constraint for the wind disturbance.

In the vertical channel, we introduce the set MV on the plane Δyg, ΔVyg, where Δyg is the
vertical deviation (m) and ΔVyg is the velocity of the vertical deviation (m/s), as a convex hexagon
with the vertices

(−3, 0), (−3, 1), (0, 1), (3, 0), (3,−1), (0,−1).

The orientation of the set MV can be explained as follows: the vertical deviation at the moment of
passing the runway threshold is compensated by a deviation from the nominal value of the vertical
velocity with the oppposite sign.

We define the set QV
max in the vertical channel by the inequalities

|Δwxg| ≤ 6 m/s, |Δwyg| ≤ 4 m/s. (3.5)

In the lateral channel, we take the set ML in the form of a convex hexagon with the vertices

(−6, 0), (−6, 1.5), (0, 1.5), (6, 0), (6,−1.5), (0,−1.5)

in the coordinates Δzg, ΔVzg, where Δzg is the lateral deviation (m) and ΔVzg is the velocity of the
lateral deviation (m/s).

We define the set QL
max by the inequality

|Δwzg| ≤ 10 m/s. (3.6)

Since the convex set MV is given in the space of the two coordinates of linear system (3.1),
the phase vector of the system of form (1.2) of the vertical channel has second order in the phase
variable. Therefore, the sections W V

main(t) and W V
add(t) of the stable tubes W V

main and W V
add are

convex two-dimensional sets. The same is true for the sections W L
main(t) and W L

add(t) of the tubes
W L

main and W L
add of the lateral channel. For the numerical construction of stable tubes, we use the

algorithm from [34].
The deviations Δwxg, Δwyg, and Δwzg of the components of the wind velocity from the nominal

values enter linear systems (3.1) and (3.2) of the vertical and lateral channels as disturbance control
actions. To calculate tubes of the main bridges W V

main and W L
main, we specify constraints (3.5)

and (3.6) on the disturbance. The results of the numerical construction show that tubes of the
main bridges degenerate quickly when they are constructed backwards from the terminal time
(the t-sections become empty) even under these not very “wide” constraints on the disturbance.
This happens because we admit discontinuous (in time) changes in the components of the wind
disturbance.

3.2. Linear systems for the inertial wind disturbance. To take into account the inertia
of the change in the wind velocity, we add the relations

Δẇxg = 0.5(Δwxg − vxg),

Δẇyg = 0.5(Δwyg − vyg)
(3.7)

to vector equation (3.1) of the linear dynamics of the vertical channel and the relation

Δẇzg = 0.5(Δwzg − vzg) (3.8)
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Fig. 2. Several sections of the main bridges WV
main and WL

main of the vertical and lateral channels,
respectively.

to equation (3.2) of the lateral channel.
Thus, in the expanded linear system (3.1), (3.7) of the vertical channel, the values Δwxg

and Δwyg become phase variables and the values vxg and vyg are disturbance control actions.
Let us impose the constraints

|vxg| ≤ 6 m/s, |vyg| ≤ 4 m/s, (3.9)

which are similar to constraints (3.5). In expanded linear system (3.2), (3.8) of the lateral channel,
the value Δwzg is a phase variable and vzg is a disturbance action. We impose the following
constraint:

|vzg| ≤ 10 m/s. (3.10)

Now, the main bridge W V
main for system (3.1), (3.7) of the vertical channel with constraints (3.3)

on the useful control and constraints (3.9) on the disturbance action does not degenerate. The same
is true for the main bridge W L

main for system (3.2), (3.8) of the lateral channel with constraints (3.4)
on the useful control and constraint (3.10) on the disturbance. Figure 2 shows sections of the bridges
W V

main and W L
main for several moments of the inverse time τ = tf − t. For small values of τ , the

sections become narrow; then, the direction of elongation changes; and, as τ grows further, the
sections grow with a small change in the elongation direction.
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3.3. Rough and exact adaptive control. The altitude of 60 m is critical for a descending
aircraft ( [1, p. 167], [33, p. 116]). Below this altitude, the control of the aircraft must be especially
accurate. The time of descending from the altitude of 60 m to the moment of passing the runway
threshold is about 15 s. Therefore, we restrict ourselves to computing the main bridges W V

main

and W L
main on the inverse time interval of 15 s. This means that, when preparing the main bridges,

we set tf − t0 = 15 s. The additional bridges W V
add and W L

add are also computed on the interval
of length 15 s. To this aim, for the vertical (lateral) channel, we use the construction of the tube
of the reachable set of system (3.1), (3.7) (system (3.2), (3.8), respectively) under the zero useful
control and constraint (3.9) (constraint (3.10), respectively) on the disturbance action.

We use the adaptive control in a discrete control scheme with step Δ in the following way. We
assume that the t-sections of the main and additional bridges for each channel are calculated in
advance on the interval [t0, tf ] = [0, 15] with the same step Δ. Let d(t) be the distance along the xg

axis to the runway threshold at the current instant t ≥ t∗, where t∗ is the initial instant of the
simulation. Then, a(t) = d(t)/Vxg0 is the predicted time to the passage of the runway threshold. In
the case a(t) > 15, we construct the adaptive control using the sections of the bridges corresponding
to τ = 15 s. If a(t) ≤ 15, then we use the sections corresponding to the instant τ = a(t). Thus,
our control is formed in a simplified way (with a digression from the exact rule of adaptive control)
if d(t) > 15Vxg0 ≈ 1000 m. If d(t) ≤ 15Vxg0, we follow the adaptive control scheme described in
Section 1.

4. SIMULATION RESULTS

For the purposes of simulation, we consider the disturbance caused by a wind microburst [35]
as the wind disturbance. A wind microburst is a natural phenomenon appearing when a descending
air current strikes the ground and flows off horizontally with whirls being formed. When passing
a microburst zone, the aircraft first enters a current of head wind, which changes to a descending
wind during a short period of time—dozens of seconds—and, after that, to a tail wind. A head
wind increases the airspeed and, hence, the lifting force, while a descending wind or tail wind has
the opposite effect. A sharp change in the wind direction from a head wind to a tail wind leads to
a sharp fall in the lifting force.

Let us describe the model of a microburst that we use [27]. A torus is given in space, see Fig. 3.
Turbulence is formed outside the torus, and the wind velocity decreases proportionally inside the

Fig. 3. Wind microburst model.
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Fig. 4. Simulation with a wind microburst: (a) trajectories in the phase plane Δyg × ΔVyg of the vertical
channel; (b) an enlarged fragment near the terminal set; (c) graphs of the control positions δps (deg) of the
engine controller; (d) graphs of the control positions δes (deg) of the elevator. The dotted line corresponds
to microburst 1, and the solid line corresponds to microburst 2.

torus as one moves closer to the center of the tube. The microburst is characterized by the following
parameters: V is the wind speed at the central point (this speed is not maximal; the wind speed
near the torus can be greater up to a factor of 2); h is the altitude of the central point; R is the
distance from the central point to the center of the tube; RC = 0.8h is the radius of the tube; and
x̃0, z̃0 is the projection of the central point onto the ground plane.

We assume that the wind velocity vector with components wxg, wyg, wzg at the point of the
geometric position of the aircraft is composed of the nominal velocity vector (in our case, wxg0 =
−5 m/s, wyg0 = wzg0 = 0) and an additive, which is caused by the microburst. The values
wxg, wyg, wzg are passed to nonlinear system (2.10) of the aircraft motion.

Let us present the results of simulation for two variants of the microburst. Microburst 1 has
the following parameters: the wind speed at the central point is 10 m/s; the distance from the

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Suppl. 1 2010



S126 GANEBNY et al.

Fig. 5. Simulation with a wind microburst: (a) trajectories in the phase plane Δzg × ΔVzg of the lateral
channel; (b) an enlarged fragment near the terminal set; (c) graphs of the control positions δrs (deg) of
the rudder; (d) graphs of the control positions δas (deg) of the ailerons. The dotted line corresponds to
microburst 1, and the solid line corresponds to microburst 2.

central point to the center of the tube is 1200 m; the altitude of the central point is 600 m; the
distance to the runway in the longitudinal coordinate (along the glide path) is 4000 m; and the
lateral deviation from the glide path line is 500 m. Microburst 2 is stronger; it has the greater wind
speed 15 m/s and the smaller distance 2500 m to the runway.

The initial position of the aircraft is at 8000 m along the xg axis from the runway threshold;
its deviation from the nominal position is 40 m upwards and 80 m sideway.

In forming the control, we assume that all the phase variables in the description of the nonlinear
dynamics of the aircraft are measured exactly during the motion process. The step Δ of the discrete
scheme of control is 0.05 s.

In Figs. 4–7, the dotted lines denote trajectories and graphs generated by microburst 1 and the
solid lines correspond to microburst 2.

First assume that current components of the wind velocity are measured exactly. The deviations
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Fig. 6. Graphs of the altitude yg (m); lateral deviation zg (m); and longitudinal wxg, vertical wyg, and
lateral wzg components (m/s) of the wind velocity. The dotted lines correspond to microburst 1, and the
solid lines correspond to microburst 2.

Δwxg, Δwyg (Δwzg) are used to calculate the phase state of linear system (3.1), (3.7) of the vertical
channel (system (3.2), (3.8) for the lateral channel) and, thereby, to calculate the adaptive control
in the vertical (lateral) channel.

Figures 4 and 5 show the results for the vertical and lateral channels, respectively. In the graphs
of the useful control, the dashed lines denote the nominal and maximal allowable values. It is seen
that the realized control does not reach its extreme allowable values. Note that control actions are
actually control positions (signals). They are smoothed by the inertia of the actuators.

Graphs of the variation in the altitude yg and of the lateral deviation zg, as well as graphs of
the components wxg, wyg, and wzg of the wind velocity are presented in Fig. 6. In the graphs of the
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Fig. 7. Simulation results for the case when the components of the wind velocity are constant:
(a) fragments of phase trajectories of the vertical channel; (b) fragments of phase trajectories of the lateral
channel; (c, d) graphs of control actions of the vertical channel.

wind disturbance, the dashed lines show the expected maximal values and the nominal values; in
each of the graphs of the phase coordinates, there is only one additional line, which is the nominal
straight line.

Note that wind velocity on some time intervals was substantially greater than the predicted
values. Nevertheless, in the case of the weak microburst, the control could successfully handle the
disturbance and the motions reached the terminal sets in both channels. In the case of the strong
microburst, the terminal conditions are also satisfied formally. However, let us examine the graph
of the altitude variation. For the strong microburst, the result is unacceptable: the aircraft hit the
ground approximately 20 s before passing the runway threshold. This is explained by the fact that
a substantial change in the longitudinal and vertical components of the wind velocity happened at
a small altitude. This has also revealed a drawback of the method: we cannot directly take into
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account the phase constraint concerning the altitude.
The assumption about the measurement of the components of the current wind velocity can

hardly be realistic. In this connection, a simulation was carried out, in which zero values were
fed to the adaptive control scheme instead of the phase variables Δwxg, Δwyg, and Δwzg of linear
systems (3.1), (3.7) and (3.2), (3.8). The results are presented in Fig. 7. For microburst 1, they are
no worse than in the case of the measurement of the wind velocity. Good results are also obtained
in the lateral channel in the case of microburst 2. However, in the vertical channel, the results
are poor: there is a large error with respect to the terminal set ML at the moment of passing the
runway threshold and a gliding regime with the extreme control actions of the thrust force and
elevator in proximity to the runway threshold.

CONCLUSIONS

The landing stage investigated in this paper (until the moment of passing the runway thresh-
old) is peculiar in that the system linearized about the nominal motion is decomposed into the
subsystems of the vertical and lateral channels. Due to the substantial velocity of the longitudinal
motion, auxiliary control problems with a fixed terminal time can be used as a base and numerical
methods of the theory of differential games developed for such problems can be applied. In this
approach, boundary conditions at the terminal time are specified for each channel in the form of
convex sets on the plane of only two phase variables that are most important for that channel.
Thus, it becomes possible to use the values of these variables predicted for the terminal time,
which makes the numerical procedures of control construction very simple. The adaptive control
method considered in this paper is adjusted to the current level of wind disturbance, preserving the
calculated guarantee under a strong disturbance and smoothly decreasing the level of the control
action if the disturbance level recedes.
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