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Abstract. A linear pursuit-evasion differential game with two pursuers and
one evader is considered. The pursuers try to minimize the final miss (an
ideal situation is to get exact capture), the evader counteracts them. Two
case are investigated. In the first case, each one pursuer is dynamically
stronger than the evader, in the second one, they are weaker. Results of
numerical study of value function level sets (Lebesgue sets) for these cases
are given. A method for constructing optimal feedback controls is suggested
on the basis of switching lines. Results of numerical simulation are shown.
Keywords: pursuit-evasion differential game, linear dynamics, value func-
tion, optimal feedback control.

1. Introduction and Problem Formulation

1. In the paper, a model differential game with two pursuers and one evader is
studied. Three inertial objects moves in the straight line. The dynamics descriptions
for pursuers P, and P» are

Zp, = ap, Zp, = ap,,
dPl = (U1 - aPl)/lP17 dP2 = (UQ - aP2)/lP2a

(1)

lu| < pr, uz| < p2,

ap, (to) =0, ap,(to) = 0.
Here, zp, and zp, are the geometric coordinates of the pursuers, ap, and ap, are
their accelerations generated by the controls u; and ug. The time constants [p, and

lp, define how fast the controls affect the systems.
The dynamics of the evader F is similar:

(g =ag, agp = (v —ag)/lg,

lv| <v, ag(ty) =0.

(2)

Let us fix some instants T7 and T5. At the instant 77, the miss of the first pursuer
with the respect to the evader is computed, and at the instant 75, the miss of the

* This work was supported by the Russian Foundation for Fundamental Researches under
grants No.09-01-00436, 10-01-96006, and by the Program “Mathematical control theory”
of the Presidium of RAS.
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second one is computed:
rpe(Th) = |zp(T1) — zp (T1)|, 7P, B(T2) = |2B(T2) — 2P, (T2)|. (3)

Assume that the pursuers act in coordination. This means that we can join them
into one player P (which will be called the first player). This player governs the
vector control u = (ug,us). The evader is counted as the second player. The result
miss is the following value:

¢ =min{rp, g(Th), rp,,6(T2)}. (4)

At any instant ¢, all players know exact values of all state coordinates zp,,
Zp, apy, Zp,, 2Py, OPy, 2E, 2B, ag. The first player choosing its feedback control
minimizes the miss ¢, the second one maximizes it.

Relations (1)—(4) define a standard antagonistic differential game. One needs to
construct the value function of this game and optimal strategies of the players.

2. Nowadays, there are a lot of publications dealing with differential games
where one group of objects pursues another group; see, for example, the following
works (in some order): (Stipanovic et al., 2009), (Blagodatskih and Petrov, 2009),
(Chikrii, 1997), (Levchenkov and Pashkov, 1990), (Abramyantz and Maslov, 2004),
(Pshenichnii, 1976), (Grigorenko, 1991), (Breakwell, 1976). The problem under con-
sideration has two pursuers and one evader. So, from the point of view of number
of objects, it is the simplest one. On the other hand, strict mathematical stud-
ies of problems “group-on-group” usually include quite strong assumptions for the
dynamics of objects, dimension of the state vector and conditions of termination.
Conversely, this paper considers the problem without any assumptions of this type.
Solution of the problem can be interesting for the group differential games.

3. Now, let us describe a practical problem, whose reasonable simplification gives
model game (1)—(4). Suppose that two pursuing objects attacks the evading one on
collision courses. They can be rockets or aircrafts in the horizontal plane. A nominal
motion of the first pursuer is chosen such that at the instant 77 the exact capture
occurs. In the same way, a nominal motion of the second pursuer is chosen (the
capture is at the instant 75). But indeed, the real positions of the objects differ from
the nominal ones. Moreover, the evader using its control can change its trajectory
in comparison with the nominal one (but not principally, without sharp turns).
Correcting coordinated efforts of the pursuers are computed during the process by
the feedback method to minimize the result miss, which is the minimum of absolute
values of deviations at the instants 77 and 75 from the first and second pursuers,
respectively, to the evader.

The passage from the original non-linear dynamics to a dynamics, which is
linearized with the respect to the nominal motions, gives (Shima and Shinar, 2002),
(Shinar and Shima, 2002) the problem under considerations.

4. The paper includes results of numerical study of game (1)—(4) for two marginal
cases: 1) both pursuers P; and P, are dynamically stronger than the evader E; 2)
both pursuers are dynamically weaker. Results for intermediate situations will be
published in another work.

Difficulty of the solution is stipulated by the fact that the payoff function ¢
is not convex (even for the case T7 = T5). In the paper (Le Ménec, 2011), a case
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of “stronger” pursuers is considered and analytically methods are applied to the
problem of solvability set construction in the game with zero result miss. For 77 =
Ty, an exact solution is obtained; if 17 # T3, then some upper approximation for
the set is given. In general case, the exact analytical solution cannot be got, in the
authors opinion.

The numerical study is based on algorithms and programs for solving linear
differential games worked out in the Institute of Mathematics and Mechanics (Ural
Branch of Russian Academy of Sciences, Ekaterinburg, Russia). The central proce-
dure is the backward constructing level sets (Lebesgue sets) of the value function.
Optimal strategies of the players are constructed by some processing of the level
sets.

2. Passage to Two-Dimensional Differential Game

At first, let us pass to relative geometric coordinates y1 = zg — zp,, Y2 = 2g — zp, in
dynamics (1), (2) and payoff function (4). After this, we have the following notations:

1 =ag — ap, Yo =ap — ap,
ap, = (u1 —ap,)/lp, ap, = (u2 —ap,)/lp,
ap = (v—ag)/lp,  |u2| < po

ur] < g, ol <vo o =min{[yi (T1)], |y2(T2)[}-

State variables of system (5) are y1, 91, ap,, Y2, Y2, ap,, ag; u1 and ug are controls
of the first player; v is the control of the second one. The payoff function ¢ depends
on the coordinate y; at the instant 77 and on the coordinate y» at the instant T5.
From general point of view (existence of the value function, positional type of the
optimal strategies), differential game (5) is a particular case of a differential game
with a positional functional (Krasovskii and Krasovskii).

A standard approach, which is set forth in (Krasovskii and Subbotin, 1974) and
(Krasovskii and Subbotin, 1988) for study linear differential games with fixed ter-
minal instant and payoff function depending on some state coordinates at the ter-
minal instant is to pass to new state coordinates. They can be treated as values
of the target coordinates forecasted to the terminal instant under zero controls. In
our situation, we have two instants 77 and T5, but coordinates computed at these
instants are independent; namely, at the instant T3, we should take into account
y1(T1) only, and at the instant To, we use the value yo(T%). This fact allows us to
use the mentioned approach when solving differential game (5). With that, we pass
to new state coordinates 1 and x2, where z1(t) is the value of y; forecasted to the
instant 77, and z2(t) is the value of yo forecasted to the instant T5.

The forecasted values are computed by formula
Ty =Y + UiTi + Clpil%:-ih(ﬂ'/lpi) +aplih(ti/lg), i=1,2. (6)
Here, x;, y;, and y; depends on ¢; 7; = T; —t; h(a) = e~ *+a+1. Emphasize that the

values 71 and 7 are connected to each other by the relation 7 —75 = const = T1 —T5.
One has Z‘Z(Ti) = yi(Ti)
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The dynamics in the new coordinates z1, x2 is the following (Le Ménec, 2011):

T = _lPlh(Tl/lPl)Ul + lEh(Tl/lE)U,
Ty = _ZPQh(TQ/ZPz)UQ + lEh(TQ/ZE)U’
lui| < p1, ug| < po, Jv| < v,

@(x1(Th), 22(T2)) = min{|z1 (T1)], |z2(T2)]}-

The first player governs the controls u;, uz and minimizes the payoff ¢; the
second one has the control v and maximizes .

Note that the control u; (us) affects only the horizontal (vertical) component
21 (&2) of the velocity vector & = (&1,42). When Ty = Tb, the second summand
in dynamics (7) is the same for &7 and #2. Thus, the component of the velocity
vector & depending on the second player control is directed at any instant ¢ along
the bisectrix of the first and third quadrants of the plane z1, 2. When v = 4v, the
angle between the axis 1 and the velocity vector of the second player is 45°; when
v = —v, the angle is 225°. This property simplifies the dynamics in comparison
with the case Ty # Tb.

Let x = (x1,22) and V (¢, z) be the value function at the position (¢, ). For any
¢ > 0, the value function level set

We={(t,x): V(t,z) < c}

(7)

coincides with the maximal stable bridge (see (Krasovskii and Subbotin, 1974) and
(Krasovskii and Subbotin, 1988)) built from the terminal set

M.={(t,z): t =T, |z1| < c} U{(t,x) 1t =To, |zs] < c}.

The set W, can be treated as the solvability set for the considered game with the
result not greater than c¢. When ¢ = 0, one has the situation of the exact capture.
The exact capture means equality to zero, at least, one of x1(71) and z2(T%).

Comparing dynamics capabilities of each of pursuers P, and P, and the evader
E, one can introduce parameters (Le Ménec, 2011) n; = u;/v; and €; = lg/lp,,
i = 1,2. They define the shape of the maximal stable bridges in the individual
games P; against F and P» against F.

n>1n>1

strong pursuer weak pursuer

Fig. 1. Different variants of the stable bridges evolution in an individual game

Consider two cases: 1) m; > 1, me; > 1,1=1,2; 2)n; <1, me; <1,i=1,2.
In the first case, each of pursuers P; and P; is stronger than the evader F; in the
second one, both pursuers are weaker. The maximal stable bridges in the individual
games in the first case look as it is shown in Fig. 1 (at the left); the right subfigure
in Fig. 1 gives the outline for the second case. The horizontal axis is the backward
time 7, the vertical axis is the one-dimensional state variable z.
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3. Level Sets of the Value Function

As it was mentioned above, a level set W, of the value function is the maximal
stable bridge for dynamics (7) built in the space ¢, « from the target set M.. A time
section (t-section) W,(t) of the bridge W, at the instant ¢ is a set in the plane of
two-dimensional variable x.

To be definite, let Ty > Ty. Then, for any ¢ € (T3, T1], the set W,(t) is a vertical
stripe around the axis 5. Its width along the axis x; equals the width of the bridge
in the individual game P;—F at the instant 7 = T} — ¢ of the backward time. At the
instant ¢t = Ty, half-width of W,(T}) is equal to c.

Denote by W, (T» 4 0) the right limit of the set W,(¢) as ¢ — T + 0. Then, the
set W,(T3) is cross-like, obtained by union of the vertical stripe W, (T2 + 0) and a
horizontal one around the axis x; with the width equal 2¢ along the axis 5.

When t < Ty, the backward construction of the sets W,(t) is made starting from
the set W,(T3).

The algorithm, which is suggested by the authors for constructing the appro-
ximating sets W,(t), uses a time grid in the interval [0,T1]: tny = T4, tn—1, ...,
ts = 11, ts—1,ts—2, .... For any instant t; from the taken grid, the set Wc(tk)
is built on the basis of the previous set Wc (tx+1) and a dynamics obtained from
(7) by fixing its value at the instant ¢x41. So, dynamics (7), which varies in the
interval (¢;,t;+1], is changed by a dynamics with simple motions (Isaacs, 1965). The
set Wc (tx) is treated as a collection of all positions at the instant ¢x, where from
the first player guarantees guiding the system to the set Wc(tk;Jrl) under “frozen”
dynamics (7) and discrimination of the second player, that is, when the second
player announces its constant control v, |v| < v, in the interval [t;,;11].

Due to symmetry of dynamics (7) and the sets W,(T1), W.(T2) with the respect
to the origin, one gets that for any ¢ < T the t-section W, (t) is symmetric also.

3.1. Maximal Stable Bridges for the Case of Strong Pursuers

Simultaneous dynamic advantage of P; and P, with the respect to E' implies that
for any ¢, W,(t) C W,(t) if t < t. This means that the bridge W, expands in the
backward time. The latter allows to make independent constructions in all four
quadrants. And due to the central symmetry, it is sufficient to make the construc-
tions in the I and II quadrants only.

Let us give results of constructing t-sections W,(t) for the following values of
game parameters:

=2, p2 =3, v=1,
Ip, = 1/2, Ip, = 1)0.857, Iy = L.

Equal terminal instants. Let 77 = T = 6. Fig. 2 shows results of constructing
the set Wy (that is, with ¢ = 0). In the figure, one can see several time sections Wy (t)
of this set. The bridge has a quite simple structure. At the initial instant 7 = 0 of
the backward time (when ¢ = 6), its section coincides with the target set My, which
is the union of two coordinate axes. Further, at the instants ¢ = 4, 2, 0, the cross
thickens, and two triangles are added to it. The widths of the vertical and horizontal
parts of the cross correspond to sizes of the maximal stable bridges in the individual
games with the first and second pursuers. These triangles are located in the II and
IV quadrants (where the signs of 27 and x2 are different, in other words, when the
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Fig. 2. Two strong pursuers, equal terminal instants: time sections of the bridge Wy
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Fig. 3. Two strong pursuers, equal terminal instants: level sets of the value function, ¢t = 2
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Fig. 4. Two strong pursuers, different terminal instants: time sections of the bridge Wy

50A%2

kk

=

-50 3!

50

-50

Fig. 5. Two strong pursuers, different terminal instants: level sets of the value function,
t=2
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evader is between the pursuers) give the zone where the capture is possible only
under collective actions of both pursuers.

Time sections W,(t) of other bridges We, ¢ > 0, have a shape similar to W(¢).
In Fig. 3, one can see the sections W,(t) at t = 2 (1 = 4) for a collection {W,}
corresponding to some series of values of the parameter c. For other instants ¢, the
structure of the sections W¢(t) is similar.

Different terminal instants. Let 177 = 7, T = 5. Results of construction of the

set Wy are given in Fig. 4. When ¢ < 5, time sections Wy (t) grow both horizontally

and vertically; two additional triangles appear, but now they are curvilinear.
Total structure of the sections W,(t) at t = 2 is shown in Fig. 5.

3.2. Maximal Stable Bridges for the Case of Weak Pursuers

Now, we consider a variant of the game when both pursuers are weaker than the
evader. Let us take the parameters

M1:0.9, /LQZO.& I/:]., lpl :lp2:1/0.7, lE:].

Let us show results for the case of different terminal instants only: 77 = 7,
Ty =5.

Since in this variant the evader is more maneuverable than the pursuers, they
cannot guarantee the exact capture.

Fix some level of the miss, namely, |x1(T1)| < 2.0, |x2(T2)‘ < 2.0. Time sections
Wa.0(t) of the corresponding maximal stable bridge are shown in Fig. 6. The upper-
left subfigure corresponds to the instant when the first player stops to pursue. The
upper-right subfigure shows the picture for the instant, when the second pursuer
finishes its pursuit. At this instant, the horizontal strip is added, which is a bit
wider than the vertical one contracted during the passed period of the backward
time. Then, the bridges contracts both in horizontal and vertical directions, and two
additional curvilinear triangles appear (see middle-left subfigure). The middle-right
subfigure gives the view of the section when the vertical strip collapses, and the
lower-left subfigure shows the configuration just after the collapse of the horizontal
strip. At this instant, the section loses connectivity and disjoins into two parts
symmetrical with respect to the origin. Further, these parts continue to contract
(as it can be seen in the lower-right subfigure) and finally disappear.

Time sections {W,(t)} are given in Fig. 7 at the instant ¢t =0 (1 = 7, 72 = 5).

4. Optimal Feedback Control

Using knowledge of the value function provided by its level sets W, we can construct
optimal strategies of the first and second players. Let us do it dividing the plane
x1, T2 for every instant ¢t to some cells. Inside each cell, the optimal control takes
some extremal values.

Rewrite system (7) as

&= D (t)ur + Da(t)us + E(t)v,
lur] < i, Juol < po, Jof <w.
Here, © = (21, x2); vectors Z1(t), Za(t), and &(¢) look like
() = (<l h(Ty = 1)/1p,), 0),  Za(t) = (0, =lp,h((T2 = )/1p,)),
&(t) = (Ieh((Ta — t)/lg), leh((T2 — t)/1E)).
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Fig. 6. Two weak pursuers, different termination instants: time sections of the maximal
stable bridge Wa o
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Fig. 7. Two weak pursuers, different terminal instants: level sets of the value function,
t=0

We see that the vector Z;(t) (Z2(t)) is directed along the horizontal (vertical) axis;
when T7 = T, the angle between the axis z7 and the vector &(t) equals 45°; when
Ty # T, the angle changes in time.

4.1. Switching Lines in the Case of Strong Pursuers

Feedback control of the first player. Analyzing the change of the value function
along a horizontal line in the plane x1, x2 for a fixed instant ¢, one can conclude
that the minimum of the function is reached in the segment of intersection of this
line and the set Wy(t). With that, the function is monotonic at both sides of the
segment. For points at the right (at the left) from the segment, the control u; =
(u1 = —p1) directs the vector %4 (t)u; to the minimum.

Splitting the plane into horizontal lines and extracting for each line the segment
of minimum of the value function, one can gather these segments into a set in the
plane and draw a switching line through this set, which separates the plane into two
parts at the instant ¢. At the right from this switching line, we choose the control
uy = p1, and at the left the control is w3 = —puq. On the switching line, the control
u1 can be arbitrary obeying the constraint |u1| < u1. The easiest way is to take the
vertical axis xo as the switching line.

In the same way, using the vector Z»(t), we can conclude that the horizontal
axis £ can be taken as the switching line for the control us.

Thus,

I, if z; >0,
ul(t,x) = ¢ —u, if x; <0, (8)
any u; € [—p, p] if z; = 0.
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Fig. 8. Two strong pursuers, equal terminal instants: switching lines for the first player

The switching lines (the coordinate axes) at any ¢ divide the plane x1, 2 into 4
cells. In each of these cells, the optimal control of the first player is constant. The
synthesis of the first player optimal control is the same for all time instants and is
shown in Fig. 8. Arrows denote the direction of the vectors Z;(t)uf, i = 1,2.

Feedback control of the second player. For a fixed instant ¢, consider a split
of the plane x1, 2 into lines parallel to the vector &(t). Take segments of local
minimum and local maximum of the value function on all lines. One can easily see
that for any line (except lines passing near the origin), there are two segments of
local minimum and one of local maximum located between them. The segments of
minimum appear by intersection of the line with the set Wy(¢). The segment of
maximum for the case T} = T5 coincides with the rectilinear part of the boundary
of some set W, (t) and has slope angle equal to 45°. If Ty # T», then the segment of
maximum degenerates to a point coinciding with the corner point of a curvilinear
triangle. For any point in the line outside all the segments, the control v is chosen in
such a way that the vector & (t)v is oriented to the direction of growth of the value
function. So, there are two parts of the line, where v = v, and two parts, where
v=—U.

For a fixed instant ¢, the switching lines for the second player comprise of the
coordinate axes and some line I7(t), which passes through the middles of the seg-
ments of local minimum, if 73 = T5, and through the corner points of curvilinear
triangles, if 71 # T5. An unpleasant peculiarity is that if 77 # T5, then one should
take v = v in the switching line I7(t); choices |v| < v are not optimal.

Inside each of 6 cells, to which the plane is separated by the switching lines of
the second player, the control is taken either v = v or v = —v.
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Fig. 9. Two strong pursuers, equal terminal instants: switching lines for the second player,
t=0

The second player optimal synthesis for the case Ty = 7, T, = 5 is shown in
Fig. 9 for ¢t = 0. Arrows denote direction of the vectors & (t)v*.

4.2. Switching Lines in the Case of Weak Pursuers

In the case of pursuers weaker than the evader, the structure of the sets W, is more
complex in some neighborhood of the origin. This leads to more complicated shape
of the switching lines both for the first and second players.

Switching lines of the first player are given in Fig. 10 at the instant ¢ = 0 (1, = 7,
79 = 5). The dashed line is the switching line for the component u1; the dotted one
is for the component us. The switching lines are obtained as a result of the analysis
of the function # — V/(¢, ) in horizontal (for u; in accordance with the direction of
the vector 2, (t)) and vertical (for ug in accordance with the direction of the vector
D5 (t)) lines. If in the considered horizontal (vertical) line the minimum of the value
function is attained in a segment, then the middle of such a segment is taken as a
point for the switching line. Arrows show the directions of the vectors 2 (t)uj and
Do (t)ud in 4 cells.

In Fig. 11 switching lines and the directions of the vectors &(t)v* are shown
for t = 0. In this picture, we have 4 cells with constant values of the second player
control.

4.3. Generating Feedback Controls. Discrete Scheme of Control

Switching lines are built as a result of processing the boundary of the sets W.(t).
With that, some grid of instants ¢, where the t-sections W¢,(¢;) of the maximal
stable bridges W, are constructed by the backward procedure. The values c; are
also taken in some grid. For any instant t;, approximating switching lines are stored
as polygonal lines in the memory of a computer.
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Fig. 10. Two weak pursuers, equal terminal instants: switching lines for the first player,
t=0

A"

30
Fotd

%
o

S
e ..
Jas

Fig. 11. Two weak pursuers, equal terminal instants: switching lines for the second player,
t=0
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Having a position x () at the instant tg, it is possible to compute the controls
u} (tg, z(ty)) and ub (¢, 2(tx)) analyzing location of the point z(¢;) with the respect
to the switching lines for u; and ug. The vectors 2;(t;) and Zs(ty) are used for
this. In the case of strong pursuers, the axis x5 is the switching line for the control
u1, and the axis x; is the switching line for the control us. The values of u] and
ub are defined by formula (8). In the case of weak pursuers, the switching line is
unique for each component u; of the control too. Drawing a ray from the point x(¢x)
with the directing vector %;(tx), one can decide whether it crosses a switching line
corresponding to the index i. If it does not, then u} (tk, x(tk)) = —p; if it crosses,
then u} (tk, x(tk)) = U;.

The first player control chosen at the instant ¢j is kept until the instant 1.
At the position (tk+1, x(tk+1)), a new control value is chosen, etc. So, the feedback
control generated by the switching lines is applied in a discrete control scheme
(Krasovskii and Subbotin, 1974, Krasovskii and Subbotin, 1988).

To construct v* (tk, a:(tk)) we use the vector & (t). Compute how many times
(even or odd) a ray with the beginning at the point x(¢x) and the directing vector
& (tx) crosses the second player switching lines. If the number of crosses is even
(absence of crosses means that the number equals zero and is even), then we take
v* (tk, a:(tk)) = +v; otherwise, v* (tk,x(tk)) = —v. The chosen control is kept until
the next instant t;41. In the position (tk_H, x(tk+1)), a new control is built, etc.

This synthesis for the first (second) player is suboptimal. Analysis of its close-
ness to an optimal one needs an additional study. Namely, it is necessary to show
that under a coordinated choice of diameters At and Ac of grids in ¢ and ¢, the
feedback control of the first (second) player built on the basis of switching lines
guarantees the limit of result as At — 0 and Ac¢ — 0, which is not greater (not
less) than V (to,x0) for any initial position (¢, zo). Such a study for linear differ-
ential games with convex ¢-sections W, (t) of maximal stable bridges is made in the
works (Botkin and Patsko, 1982, Zarkh, 1990, Patsko, 2006). In the problem under
consideration the sections W,(t) are not convex, and this fact preconditions the
difficulty of this problem.

5. Simulation Results

Let the pursuers P;, P», and the evader E move in the plane. At the initial instant
to = 0, velocities of all objects are parallel (Fig. 12) and sufficiently greater than
the possible changes of the lateral velocity components. The instant of longitudinal
coincidence of objects P, and F is T1; the instant of coincidence of the objects P»
and E is Tp. The dynamics of lateral motion is described by relations (1), (2); the
resulting miss is given by formula (4).

P
P1
<k
E
P2
D

Fig. 12. Schematic initial positions of the pursuers and evader



168 Sergey S. Ganebny, Sergey S. Kumkov, Stéphane Le Ménec, Valerii S. Patsko

In all following results, the initial lateral velocities and accelerations are assumed

to be zero:

0 _ 0 _ 30 _(n 0 _ 0 _ 0 _
ip, =2p, =25 =0; ap =ap, =ar =0.

A #PL.P2,E
50

25

0

N |

-25
-40

Fig. 13. Two strong pursuers, equal termination instants: trajectories in the original space

In Fig. 13, one can see the trajectories of the objects in the original space for
the case of strong pursuers and equal terminal instants for the following game
parameters:

pi=2, po=3, v=1,1lp =1/2, lp, =1/0.857, lg =1, Ty =T, = 6.

The pursuers P;, P», and the evader E act optimally. The trajectories drawn by
solid lines correspond to the following initial data:

zp, = —40, 2§ =25, 2 =0.
The dashed lines denote the trajectories for the following initial lateral parameters:
2} =25, 2% =50, 2, =0.

In the first case, the evader is successfully captured (at the terminal instant, the
positions of both pursuers are the same as the position of the evader). In the second
variant of initial positions, the evader escapes: at the terminal instant no one of the
pursuers superposes with the evader. In this case, one can see as the evader aims
itself to the middle between the terminal positions of the pursuers (this guarantees
to him the maximum of the payoff function ¢).

Figs. 14, 15, and 16 correspond to the case of weak pursuers and different ter-
minal instants:

M1 = 09, H2 = 08, V= 1, lpl = lpz = 1/07, ZE = 1, T1 = 7, T2 = 5.
The initial positions are taken as follows:
2P = —12, 2§ =12, 2§ =0.

Trajectories in Fig. 14 are built for the optimal controls of all objects. At the
beginning of the pursuit, the evader closes to the first (lower) pursuer. It is done to
increase the miss from the second (upper) pursuer at the instant 7. Further closing
is not reasonable, and the evader switches its control to increase the miss from the
first pursuer at the instant 77.
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Fig. 15 gives the trajectories, when the pursuers use their optimal feedback
controls generated by switching lines, but the evader applies a constant control
v = v escaping from P; and ignoring P. In Fig. 16, the situation is given, when
the evader, vice versa, keeps control v = —v escaping from P, and ignoring P;. In
both these situations, the payoff is less than in the case when the second player uses
optimal control. When a constant control v = +v is applied, the miss to the second
pursuer at the instant T5 is less; when the second player keeps v = —v, the miss to
the first pursuer at the instant 7 decreases.

OW
‘//

-12

o |

Fig. 14. Two weak pursuers, different termination instants: trajectories of the objects in
the original space, optimal control of the second player
A Zp1,P2,E
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e
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Fig. 15. Two weak pursuers, different termination instants: trajectories of the objects in
the original space, constant control of the second player v = +v
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Fig.16. Two weak pursuers, different termination instants: trajectories of the objects in
the original space, constant control of the second player v = —v
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6. Conclusion

A problem of pursuit-evasion with two pursuing objects and one evading object
is considered as a two-dimensional antagonistic differential game. Difficulty of nu-
merical solution of this problem is conditioned by the fact that the ¢-sections of
the value function level sets are not convex. For two qualitatively different types of
parameters (“strong” pursuers, “weak” pursuers), an analysis of the value function
level sets is worked out in the paper. On the basis of this analysis, optimal strategies
of players are built.
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