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Abstract
In this chapter one considers a linear antagonistic differential game with
fixed terminal time T , geometric constraints on the players’ controls,
and continuous quasi-convex payoff function ϕ depending on two com-
ponents xi, xj of the phase vector x. Let Mc = {x : ϕ(xi, xj) � c} be
a level set (a Lebesgue set) of the payoff function. One says that the
function ϕ possesses the level sweeping property if for any pair of con-
stants c1 < c2 the relation Mc2 = Mc1 + (Mc2

∗− Mc1) holds. Here,
the symbols + and ∗− mean algebraic sum (Minkowski sum) and geomet-
ric difference (Minkowski difference). Let Wc be a level set of the value
function (t, x) �→ V(t, x). The main result of this work is the proof of the
fact that if the payoff function ϕ possesses the level sweeping property,
then for any t ∈ [t0, T ] the function x �→ V(t, x) also has the property:
Wc2(t) = Wc1(t) +

(Wc2(t)
∗− Wc1(t)

)
. Such an inheritance of the level

sweeping property by the value function is specific to the case where
the payoff function depends on two components of the phase vector. If
it depends on three or more components of the vector x, the statement,
generally speaking, is wrong. This is shown by a counterexample.

Key words. Linear differential games, value function, level sets, geomet-
ric difference, complete sweeping
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1 Introduction

The central theme for this work is the operation of the geometric difference
(Minkowski difference). Its definition and basic properties are given, for exam-
ple, in [5]. At the early stage of developing the theory of differential games, the
geometric difference was applied in [13,14] to solve games with linear dynamics.
After that, the concept of the geometric difference was intensively used in the
theory of control and differential games (see, for example, [10,3,2,9]).

As usual, the algebraic sum (Minkowski sum) of two sets A and B is the set
A + B = {a + b : a ∈ A, b ∈ B}.

Definition 1.1. The geometric difference of two sets A and B, where B 	= ∅,
is the set A ∗− B = {x : B + x ⊂ A}. In other words, the geometric difference
of the sets A and B is the set of elements such that each of them shifts the set
B into the set A.

Let us give some planar examples (Figure 1). The example a) shows the
geometric difference of a large square and a small circle. The result is a square
with the sides shorter than the original ones by the diameter of the circle. The
example b) demonstrates the geometric difference of two circles. The result is
also a circle with the radius equal to the difference of the radii of the original
circles.

If the set A is convex, then the set A ∗− B is convex too. In general the
following relation holds:

B + (A ∗− B) ⊂ A,

that is, the subtrahend set after summation with the geometric difference gives,
generally speaking, only a subset of the original set. For instance, in the first

a) b)

Figure 1: Examples of geometric difference: a) the geometric difference of a square
and a circle; b) the geometric difference of two circles. The geometric difference is
shown by dashed lines. Thin lines denote some extreme lays of the subtrahend set.
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a) b)

Figure 2: Pictures of the summation of the geometric difference and the subtrahend
set for the examples in Figure 1.

of the above examples, after such a summation a square with round corners is
obtained (Figure 2a). In the example b), such a summation gives exactly the
original circle (Figure 2b).

Definition 1.2. The situation, when the equality

B + (A ∗− B) = A

holds, is called the complete sweeping of the set A by the set B.

The notion of “complete sweeping” was originally introduced in [4]. The pre-
ceding example a) shows the possibility of absence of the complete sweeping
property, whereas example b) shows its possible presence.

As a good illustrative analogy, one can imagine the set A as a room and the
set B as a broom. So, the situation of complete sweeping corresponds to a good
hostess who sweeps the whole room and does not miss any corner.

Let us give an equivalent definition of the complete sweeping.

Definition 1.3. A set A is completely swept by a set B if ∀a ∈ A∃x : 1) a ∈
B + x and 2)B + x ⊂ A.

Let Mc be the level set (the Lebesgue set) of a function f corresponding to
a constant c: Mc =

{
x : f(x) � c

}
.

Definition 1.4. A function f possesses the level sweeping property if for any
pair of constants c1 < c2 such that Mc1 	= ∅, the set Mc1 sweeps completely
the set Mc2 , that is, the relation Mc2 = Mc1 + (Mc2

∗−Mc1) holds.

Note that the convexity of a function is neither necessary nor sufficient for
presence of the level sweeping property. This is demonstrated by the example
shown in Figure 3. Here we consider a function whose graph is a hemisphere
cut by two planes such that some smaller level set is a circle and some greater
one is a circle with a “roof.” It is evident that the smaller level set does not
completely sweep the greater one: the corner of the latter cannot be covered.
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Figure 3: Example of a convex function which does not possess the level sweeping
property.

2 Description of the Main Result

Let us consider a linear antagonistic differential game

ẋ = A(t)x + B(t)u + C(t)v, t ∈ [t0, T ], x ∈ R
n, u ∈ P, v ∈ Q,

ϕ
(
xi(T ), xj(T )

)
→ min

u
max

v

(1)

with fixed terminal time T , convex compact constraints P , Q for controls of
the first and second players, and continuous quasi-convex payoff function ϕ
depending on two components xi, xj of the phase vector x at the terminal time.
(A function is quasi-convex if each of its level sets (Lebesgue sets) is convex.)
The first player minimizes the payoff, and the interests of the second one are
opposite. It is assumed that every level set Mc =

{
(xi, xj) : ϕ(xi, xj) � c

}
of

the payoff function ϕ is bounded in the coordinates xi, xj .
Using a change of variable y(t) = Xi,j(T, t)x(t) ([7, p. 354], [8, pp. 89–91]),

which is provided by a matrix combined of two rows of the fundamental Cauchy
matrix of system (1), one can pass to the equivalent game

ẏ = D(t)u + E(t)v,

t ∈ [t0, T ], y ∈ R
2, u ∈ P, v ∈ Q, ϕ

(
y1(T ), y2(T )

)
,

D(t) = Xi,j(T, t)B(t), E(t) = Xi,j(T, t)C(t).
(2)

Here, the new phase variable y is two dimensional. The right-hand side of the
dynamics does not contain the phase variable. The game interval, the con-
straints for controls, and the payoff function are the same as in the original
game (1) (except that the payoff function now depends on components of the
vector y).

Let (t, y) → V (t, y) be the value function of the differential game (2). The
function V is continuous. For any t ∈ [t0, T ], the function y → V (t, y) is quasi-
convex with compact level sets.

Suppose that the payoff function ϕ possesses the level sweeping property,
that is, for two arbitrary constants c1 < c2 the corresponding level sets Mc1
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and Mc2 of the function ϕ (such that Mc1 	= ∅) obey the relation

Mc2 = Mc1 + (Mc2
∗−Mc1). (3)

It turns out that the value function inherits the level sweeping property from
the payoff function. Namely, let Wc(t) =

{
y : V (t, y) � c

}
be a time section

at the instant t of the level set Wc =
{
(t, y) : V (t, y) � c

}
of the value func-

tion V . In the paper, it is shown that the relation (3) with an additional con-
dition Wc1(t) 	= ∅, t ∈ [t0, T ], gives

Wc2(t) = Wc1(t) +
(
Wc2(t) ∗−Wc1(t)

)
, t ∈ [t0, T ]. (4)

The main result can be reformulated in the following way.

Theorem 2.1. If the payoff function of the game (2) is such that any of its
smaller level sets completely sweeps any larger one, then the time sections of
level sets of the value function at any fixed time instant t from the game interval
have the same property.

Since the sections of a level set of the value function in the original and equiv-
alent coordinates are connected by the relationWc(t) =

{
x ∈ R

n : Xi,j(T, t)x ∈
Wc(t)
}
, t ∈ [t0, T ], the statement about inheritance of the level sweeping prop-

erty by the value function from the payoff function is also true for the original
game (1). In this form, the fact was formulated in the abstract.

3 Backward Procedure for Constructing Level Sets

To prove the theorem, now a backward procedure will be described, which
constructs approximately a level set of the value function in game (2). A level
set corresponding to a number c is built as a collection of time sections

{
Wc(ti)

}
in a grid of instants {ti}. Here, the bold notation W is used instead of W to
emphasize that approximate sets are used. Construction is started from a level
set Mc of the payoff function taken at the terminal instant T . The set Mc is
processed by means of a procedure to the instant T − ∆ giving the section
Wc(T − ∆). Then by means of the same procedure on the basis of the set
Wc(T −∆), a new setWc(T − 2∆) is computed for the instant T − 2∆, and so
on until the given time t∗ ∈ [t0, T ) (Figure 4).

The procedure for constructing a section Wc(ti) uses the previous section
Wc(ti+1) of the level set, the matrices D(ti) and E(ti) from the game dynam-
ics (2), and the sets P and Q constraining the players’ controls. It is described
by the following formula [14,15,9]:

Wc(ti) =
(
Wc(ti+1) + ∆

(
−D(ti)P

)) ∗− ∆E(ti)Q. (5)
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Figure 4: Scheme of the backward procedure of constructing a level set of the value
function.

Suppose that intWc(t) 	= ∅ for any t ∈ [t∗, T ]. Here, intA means the interior
of a set A. It is known that when decreasing the step size ∆ of the discrete
scheme, the approximately built section Wc(t∗) of a level set converges to the
ideal one Wc(t∗) in the Hausdorff metric [12,1,11].

So, to prove the inheritance of the level sweeping property by the value func-
tion it is necessary to prove that the property of complete sweeping is conserved
after operations of algebraic sum and geometric difference and after passing to
the limit when decreasing the step size ∆.

4 Additional Properties of the Geometric Difference

The following statement concerns the conservation of the complete sweeping
property after the operations of algebraic sum and geometric difference.

Lemma 4.1. Let convex compact sets A, B, and C in the plane be such that
the set A is completely swept by the set B, that is, A = B + (A ∗− B). Then
1) (A + C) = (B + C) +

(
(A + C) ∗− (B + C)

)
;

2) if B ∗− C 	= ∅, then (A ∗− C) = (B ∗− C) +
(
(A ∗− C) ∗− (B ∗− C)

)
.

Proof. The first fact is proved directly with the help of equivalent Definition 1.3
of the complete sweeping. So, let us show that for any a′ ∈ A + C there is an
element x ∈ R

2 such that a′ ∈ (B + C) + x and (B + C) + x ⊂ (A + C).
Fix a′ ∈ A + C. Then one can find a ∈ A and c ∈ C such that a′ = a + c.

According to the complete sweeping of the set A by the set B, there is an
element x ∈ R

2 such that a ∈ B + x and B + x ⊂ A. Prove that this element
x is also acceptable for establishing the complete sweeping of the set A + C by
the set B + C.
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Since a ∈ B + x, it follows that a + c = a′ ∈ B + x + c ⊂ (B + C) + x.
Because B + x ⊂ A, then (B + C) + x ⊂ (A + C).
So, the conservation of the complete sweeping after the algebraic sum is

proved. Note that this proof does not demand any compactness, or convexity,
or dimension restriction of the sets A, B, and C. Therefore, statement 1) of
Lemma 4.1 also holds under more general conditions.

Let us proceed to statement 2) of Lemma 4.1. We use the support functions of
the sets under consideration. Recall that every convex compact set A produces a
finite positively homogeneous convex function by the formula ρA(l) = max

{
l′a :

a ∈ A
}
. This function is called the support function of the set A. And vice versa,

for any finite positively homogeneous convex function ρ, a convex compact set
can be found such that ρ is its support function [16].

Let us establish a correspondence between set operations and operations over
support functions. Let A↔ ρA, B ↔ ρB . Then ρA+B = ρA+ρB . It is also known
that if A ∗− B 	= ∅, then ρA ∗−B = conv {ρA − ρB} [2,9]. When A ∗− B = ∅, it
is supposed that ρA ∗−B ≡ −∞.

Let the set A be completely swept by the set B, that is, A = B + (A ∗− B).
Then ρA = ρB + conv {ρA − ρB}, or ρA − ρB = conv {ρA − ρB}. Hence, if the
set A is completely swept by the set B, then the difference of their support
functions is convex.

Using the language of support functions, the statement about conservation of
the complete sweeping property after the geometric difference can be formulated
as follows.

2∗) Let some convex compact sets A, B, and C be such that the difference
ρA− ρB is convex and the function conv {ρB − ρC} has finite value everywhere
in R

2. Then the difference conv {ρA − ρC} − conv {ρB − ρC} is also convex.
Assume f = ρA − ρC , g = ρB − ρC .
The function f − g = (ρA− ρC)− (ρB − ρC) = ρA− ρB is convex. Convexity

of the function conv f − conv g = conv {ρA− ρC}− conv {ρB − ρC} is shown in
the next lemma. �

Lemma 4.2. Let functions f and g : R
2 → R be positively homogeneous,

continuous, the difference f − g be convex, and the function conv g have finite
value everywhere in R

2. Then the difference conv f−conv g is a convex function.

Before the proof of Lemma 4.2, let us formulate some auxiliary propositions.
They are quite simple, so no proofs are given.

Let us denote the boundary of a set D by ∂D. Restriction of f to a set D
will be written as f

∣∣
D

. By conv
∣∣
D

f we mean the convex hull of the function f
computed in a convex set D.
1◦ Let f : R

n → R be a convex function. Also let D ⊂ R
n be a closed convex set

and let the function f̃ be convex in the set D. Let us suppose that f̃(x) = f(x)
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when x ∈ ∂D and f̃(x) � f(x) when x ∈ intD. Then the function

g(x) =
{

f̃(x), x ∈ D,
f(x), x 	∈ D

is convex in R
n.

2◦ Let f : R
n → R and D ⊂ R

n be a closed convex set. Let us suppose that
(conv f)(x) = f(x) when x ∈ ∂D. Then conv

∣∣
D

f = (conv f)
∣∣
D

.
3◦ Let f : R

n → R be a continuous, positively homogeneous function. Then for
any vector l∗ 	= 0 a vector p ∈

{
x : l′∗x � 0

}
exists such that f(p) = (conv f)(p).

4◦ Let f : R
2 → R be a continuous, positively homogeneous function, and let

C be a closed cone of angle not greater than π. Let us suppose that f(x) =
(conv f)(x) if x ∈ ∂C and f(x) 	= (conv f)(x) if x ∈ intC. Then the function
conv f is linear in the cone C.

Now, Lemma 4.2 will be proved.

Proof. 1) Let us denote g̃ = conv g, S =
{
x ∈ R

2 : g̃(x) = g(x)
}
. By virtue of

the continuity of the functions g̃ and g, the set S is closed. Thus, the set R
2\S

can be presented as at most a countable join of non-overlapping open cones C0
i ,

i = 1, m, m � ∞. Following proposition 3◦, each of these cones is of angle not
greater than π. Let Ci be the closure of the cone C0

i .
Using proposition 2◦, one can establish that for any i, the equality conv

∣∣
Ci

g =
(conv g)

∣∣
Ci

holds.

2) The process of constructing the convex hull of the function g can be consid-
ered as a stepwise one: g = g0 � g1 � g2 � . . . Here, each next function gi is
obtained from the previous one gi−1 by changing the latter in the cone Ci by
a linear function li. One has li(x) = gi−1(x) when x ∈ ∂Ci and li(x) < gi−1(x)
when x ∈ intCi. Also according to proposition 4◦, li = (conv g)

∣∣
Ci

.
Simultaneously, the function f is also corrected: f = f0 � f1 � f2 � . . .

such that fi

∣∣
Ci

= conv
∣∣
Ci

fi−1, fi

∣∣
R2\Ci

= fi−1

∣∣
R2\Ci

. That is, fi is obtained from
fi−1 by convexification of the latter in the cone Ci.
3) Let hi = fi − gi, i � 0. We will prove by induction on i that for any i the
function hi is convex.

When i = 0, the function h0 = f0 − g0 = f − g is convex by the condition of
the lemma.

Suppose that for any 0 � i − 1 < m, the function hi−1 is convex. We will
show that in this case the function hi is also convex.

When x ∈ R
2\Ci, one has gi(x) = gi−1(x) and fi(x) = fi−1(x). Therefore,

hi = hi−1 in R
2\Ci.

We have gi(x) � gi−1(x) when x ∈ Ci. Thus, in the cone Ci the relation
fi−1 − gi � fi−1 − gi−1 = hi−1 holds, and, therefore, fi−1 � gi + hi−1. Because
gi is linear in Ci, then the sum gi+hi−1 is convex in Ci. Consequently, it follows
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that in Ci the relation fi = conv
∣∣
Ci

fi−1 � gi+hi−1 holds, that is, hi = fi−gi �
hi−1.

Since in the cone Ci the function fi is convex and gi is linear, the function
hi = fi − gi is convex in Ci.

Applying proposition 1◦, one obtains that the function hi is convex in R
2.

4) The sequence of the continuous functions gi is nonincreasing. With that
lim gi = conv g. The sequence of the continuous functions fi is nonincreasing
and is bounded from below by the function conv f . Thus, this sequence has a
pointwise limit f̃ . The sequence of convex functions hi converges pointwise to
a convex function h̃ = f̃ − conv g. Hence, the function f̃ = h̃+conv g is convex.

Let us prove that f̃ = conv f . One has that f̃(x) = f(x) � (conv f)(x) when
x ∈ S. For any x ∈ R

2\S an index i � 1 exists such that x ∈ Ci, and, therefore,

f̃(x) = fi(x) =
(
conv
∣∣
Ci

fi−1

)
(x) =

(
conv
∣∣
Ci

f
)

(x) � (conv f)(x).

Hence, f̃ � conv f . Because f � f̃ and the function f̃ is convex, then f̃ =
conv f .

By this, it is shown that the difference conv f−conv g is convex in R
2. �

5 Counterexamples to Generalizations of Lemma 4.2

Note that Lemma 4.2 holds only for positive homogeneous functions of two
variables. Generally speaking, the lemma does not hold if the function does not
possess positive homogeneity or the dimension of its argument is higher than
two.

Let us show this by some counterexamples. At first, an example of convex
compact three-dimensional sets A, B, and C will be given such that the set
B completely sweeps the set A, but the difference B ∗− C does not completely
sweep the set A ∗− C. Let us take the set A as a hemisphere cut by two planes
(Figure 5). The set B is homothetic to the set A with coefficient of homothety
less than 1. The set C is taken as an interval, where the length is less than the
horizontal side of the cut part of the set A, but larger than the cut part of the
set B.

Since the set C is an interval, the geometric difference B ∗− C (A ∗− C) is the
intersection of two copies of the set B (correspondingly, A) shifted by the length
of the interval C. According to this, the difference B ∗− C looks like a cap: the
cut part disappeared. At the same time, the difference A ∗− C keeps the cut
part. The sections of the flat sides of the geometric differences are shown at
the right in Figure 5. It is evident that the sharp point of the “roof” of the set
A ∗− C cannot be covered by the circle B ∗− C. Therefore, there is no complete
sweeping between the sets A ∗− C and B ∗− C.

Thus, a counterexample for a possible generalization of statement 2) of
Lemma 4.1 is constructed for the case when the sets A, B, C are of dimension
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Figure 5: Counterexample for conservation of the complete sweeping after the oper-
ation of geometric difference of three-dimensional sets.

higher than two. Support functions of the sets considered give a counterex-
ample for a generalization of statement 2∗) and, therefore, for Lemma 4.2 in
the case when the positively homogeneous functions have their arguments of
dimension three or higher.

Violation of Lemma 4.2 in the case of functions of the general kind (not
positively homogeneous) is demonstrated by the following example.

Let the functions f and g be piecewise linear. The graph of the function f can
be obtained from a quadrahedral pyramid by cutting it by two planes parallel to
the diagonal of the base (Figure 6a). Something looking like a “chisel” appears.

a)

b)

c)

Figure 6: Graphs of the functions f (a), −g (b), and −conv g (c).
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a) b) c)

Figure 7: Sections of the graphs of conv f = f (a), −conv g (b), and
conv f − conv g (c).

The graph of the function −g (it is more demonstrative to imagine the func-
tion −g) looks like a “roof” having a cavity of the same form as the bottom of
the graph of f (Figure 6b). The origin is placed at the middle of the bottom
of the graph of f and at the middle of the cavity of −g. Then the graph of
f − g = f + (−g) looks like the graph of f . The slope of the bottom outshoot
becomes “sharper” and the slope of the side faces becomes, conversely, “flatter”
in comparison with the graph of f . The original slopes can be chosen such that
the graph of f − g will be convex. (Namely, it is necessary to take the side faces
of f quite “sharp” and the faces of g and the bottom outshoot of f quite “flat.”)

Let us consider the graph of the function conv f−conv g = f+(−conv g). The
convex hull conv f coincides with f itself because the function f is convex. The
graph of −conv g (or of the concave hull of −g) looks like a “roof” without any
cavities (Figure 6c). Let us take the sections of the graphs made by a vertical
plane containing the bottom line of “chisel” f . Since the section of the function
conv f − conv g is non-convex (Figure 7), the function conv f − conv g itself is
non-convex.

6 Conservation of Level Sweeping to the Limit

Fix an arbitrary instant t∗ ∈ [t0, T ) and choose a sequence {ϑk} of subdivisions
of the time interval [t∗, T ]: ϑk = {t∗ = t

(k)
∗ < · · · < t

(k)
Nk

= T}. With k → 0

diameter ∆k of subdivision ϑk goes to 0. Denote by W
(k)
c1 (t∗) and W

(k)
c2 (t∗)

the results of applying the backward procedure (5) on the subdivision ϑk with
starting setsWc1(T ) = Mc1 andW2(T ) = Mc2 .

Because the starting sets Wc1(T ) and Wc2(T ) have the complete sweep-
ing, then according to the results on conservation of the complete sweeping
after algebraic sum and geometric difference from Section 4, each pair of sets
W

(k)
c1 (ti) andW

(k)
c2 (ti) has the complete sweeping. Consequently, for any k the

setW(k)
c1 (t∗) completely sweeps the setW(k)

c2 (t∗).
1) Under the assumption that for any t ∈ [t∗, T ] the section Wc1(t) of ideal level
set Wc1 of the value function has a non-empty interior (that is, intWc1(t) 	= ∅),
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one has the following convergenceW(k)
c1 (t∗)→Wc1(t∗) andW

(k)
c2 (t∗)→Wc2(t∗)

in the Hausdorff metric with k →∞.
Therefore, to prove the complete sweeping of the set Wc2(t∗) by the set

Wc1(t∗) under the additional condition intWc1(t) 	= ∅, t ∈ [t∗, T ], it is neces-
sary to justify the following simple fact. Let two sequences {Ak} and {Bk} of
compact sets converge in the Hausdorff metric to compact sets A and B respec-
tively. Suppose that for any k the set Bk completely sweeps the set Ak. Then
the limit sets have the same property: the set B completely sweeps the set A.

Let us show that for the sets A and B, the properties, which stipulate the
complete sweeping of the first set by the second one, hold: 1) ∀a ∈ A ∃x : a ∈
B + x and 2)B + x ⊂ A (see Definition 1.3).

Fix an arbitrary element a ∈ A. Due to the convergence Ak → A, one can
choose a sequence {ak}, ak ∈ Ak, such that ak → a. Since the set Ak is com-
pletely swept by the set Bk, it implies ∀k ∃xk : ak ∈ Bk +xk and Bk +xk ⊂ Ak.

Consider the sequence {xk}. It is bounded. Therefore, a converging subse-
quence can be extracted from it. Without loss of generality, let us suppose that
the sequence {xk} itself converges to an element x. This limit is just the desired
element, which figures in the properties giving the complete sweeping. Let us
show this fact.

The first property: a ∈ B + x. We have that ∀k ak ∈ Bk + xk. Choose bk ∈
Bk : ak = bk + xk. Since ak → a and xk → x, it follows bk → b = a− x. Taking
into account the convergence Bk → B, one can obtain that b ∈ B. Therefore,
there is an element b ∈ B such that a = b + x. Consequently, a ∈ B + x.

The second property: B + x ⊂ A. Let us take an arbitrary element b ∈ B.
Due to the convergence Bk → B, one can take a sequence {bk}, bk ∈ Bk,
such that bk → b. Since Bk + xk ⊂ Ak, it implies bk + xk ∈ Ak. Therefore,
∀k ∃ ak ∈ Ak : bk + xk = ak. Because bk → b and xk → x, then ak tends to an
element ā = b+x. Taking into account the convergence Ak → A, one can obtain
that ā ∈ A. This shows that ∀ b ∈ B b + x ∈ A. Consequently, B + x ⊂ A.

Hence, the set B completely sweeps the set A.
2) Now let Wc1(t∗) 	= ∅, but intWc1(t̄) = ∅ at an instant t̄ ∈ [t∗, T ]. From
the continuity of the value function, it follows that intWc(t̄) 	= ∅ for c > c1.
Then also int Wc(t) 	= ∅ for c > c1 when t ∈ [t∗, T ]. According to the fact
proved above, the set Wc(t∗) completely sweeps the set Wc2(t∗) for c ∈ (c1, c2).
It follows from this that the set Wc1(t∗) completely sweeps the set Wc2(t∗).

7 Is It Possible to Weaken the Dimension Assumption?

Theorem 2.1 is formulated for the case when the payoff function ϕ depends on
two components of the phase vector at the terminal instant T . Let us show that,
generally speaking, the theorem does not hold if the payoff function is defined
by three or more components of the phase vector.



Level Sweeping 35

Let us consider a differential game

ẋ = u + v, t ∈ [t0, T ], x ∈ R
3, u ∈ {0}, v ∈ Q,

ϕ
(
x(T )
)

= min
{
c : x(T ) ∈ cM

} (6)

with fixed terminal time T , a fictitious first player (actually, the first player is
absent) and the payoff function, which is the Minkowski function of a compact
convex set M . The set M is taken as the set A shown in Figure 5. The pay-
off function depends on full a three-dimensional phase vector and, evidently,
possesses the level sweeping property. As the set Q constraining the control of
the second player, let us take the interval shown in Figure 5 and denoted there
by C.

Because the right-hand side of the game dynamics does not depend on time
and does not contain the phase variable, then for any t and any c the section
Wc(t) of the level set of the value function is defined by the formula Wc(t) =
Wc(T ) ∗− (T − t)Q. Let t = T − 1. Take c2 = 1 and c1 < 1 such that the set
Mc1 = c1M coincides with the set B drawn in Figure 5. Then Wc1(t) = Mc1

∗−
Q = B ∗− C and Wc2(t) = Mc2

∗− Q = A ∗− C. As described in Section 5 in
the text relating to Figure 5, the set A ∗− C is not completely swept by the set
B ∗− C. Therefore, the set Wc2(t) is not completely swept by the set Wc1(t).

Thus, the condition of Theorem 2.1 connected to the number of arguments
of the payoff function is essential.

8 Conclusion

In this chapter, a linear antagonistic differential game with fixed terminal time,
geometric constraints on the players’ controls, and continuous quasi-convex ter-
minal payoff function depending on two components of the phase vector is con-
sidered. A level sweeping property of a quasi-convex function is defined. This
property consists of the condition that any non-empty smaller level set com-
pletely sweeps any larger one. The term “complete sweeping” is based on the
concept of geometric difference (Minkowski difference) and is known in convex
analysis and in differential game theory. It is proved that, in the game class con-
sidered, the level sweeping property is inherited by the value function. That is,
if the payoff function possesses the level sweeping property, then the same prop-
erty is true for the constriction of the value function to any time instant from
the game interval. It is shown (by a counterexample) that this holds only when
the payoff function depends on at most two components of the phase vector.

The level sweeping property of the value function can be useful, for example,
when analyzing singular surfaces appearing in linear differential games with
fixed terminal time. Namely, under the presence of this property, the structure
of singular surfaces has some patterns absent in the general situation. In this
case, numerical algorithms for constructing and classifying singular surfaces
become essentially easier.
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Springer-Verlag, Berlin, 1957.

[6] Isaacs R., Differential Games, John Wiley & Sons, New York, 1965.

[7] Krasovskii N.N., Games Problems about Contact of Motions, Nauka,
Moscow, 1970 (in Russian); Transl. as Rendez-vous Game Problems, Nat.
Tech. Inf. Serv., Springfield, VA, 1971.

[8] Krasovskii N.N. and Subbotin A.I., Game-Theoretical Control Problems,
Springer-Verlag, New York, 1988.

[9] Kurzhanski A.B. and Valyi I., Ellipsoidal Calculus for Estimation and Con-
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