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We consider a problem of estimation of the radar systematic errors (or radar biases). These errors are 
nonrandom distortions in measurements, which depend on location of an aircraft. Three algorithms are 
suggested to solve the problem. Each algorithm is based on its own assumptions and is effective under them. A 
program package was elaborated that includes all the algorithms. Correctness of the work of these algorithms 
was checked on model and real radar data.  

Introduction 
 

Radar measurements are subjected to errors like measurements of other sensors. There are two types of radar 
errors: one type of errors has a probabilistic nature, i.e., this is the random noise, and another type is non-random 
distortions, namely, the systematic errors. The processing of the real data showed that, in general, the systematic 
errors depend on the relative mutual location of an observed aircraft and the radar, and they are stable in time. A 
vector field is a correct mathematical structure for description of the systematic errors: a shift vector for 
measurements depends on spatial location of an aircraft.  

Determination of the systematic errors in radar data and their following correction are important operations 
for stable work of the air traffic control systems [1]. Especially, it concerns multisensor tracking [2]. There are 
many methods for solving this problem. One of them consists in joint processing of the radar and ADS-B data. 
But the authors consider another variant where the determination is only based on the radar data without any 
external information.  
 
Measurement model  
 

Let  be a total number of radars. Consider the observation equation for description of the measurement 
process of the radar i  in a Cartesian coordinate system; for example, it can be the geocentric system. Let 

m
( )x t

i

 

be the vector of the current aircraft location at the instant . Denote a vector of the radar measurement as ; the 

quantity 

t z

is  is a shift vector that describes influence of the systematic errors on a measurement; the vector  

denotes a shift related to the random errors. Then the observation equations are  
iw

 
( ) ( ) ( ( )) ( )i iz t x t s x t w t   i ,      1, ,i m  . (1) 

 
The radar does not measure the location of an aircraft directly in the Cartesian coordinate system. Instead, it 

gives a triple ( ,  at the output where , , )r h
i iz z z r

iz iz  are its own measurements of the slant range to the target 

and the target azimuth, and  is the altitude measurement that is received directly from the aircraft (in the case 
of so-called secondary radar). The mapping  is a one-to-one and invertible mapping 

everywhere outside some neighborhood of the radar. Often, it is convenient to consider the observation equations 
in the terms of the direct radar measurements:  
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Here the variables , r
i i

  are the systematic errors in the slant range and azimuth. There are random errors in 

all measurement channels. They are denoted by , r
iw iw , . Symbols , hw ( )ir x ( )i x  denote the slant range from 

the target to the radar i  and its azimuth, respectively;  is the aircraft altitude above the Earth surface.  (h x)

If the altitude  is not measured (for example, by the so-called primary radars), the measurement 

 will not uniquely correspond to some exact location in 3D space. Nevertheless, in the most such events, 

there are measurements of this aircraft by other radars with the presence of the altitude. So, it provides an 
opportunity to resolve this uncertainty.  

( )h x

( , )r
i iz z

A popular model of the radar systematic errors is the model of so-called the constant systematic errors in 
range and azimuth. In this case, the values , r

i i
  do not depend on location x  of an aircraft.  

 
The problem of estimation of radar systematic errors  
 

Three algorithms were elaborated for the problem of estimating the radar systematic error: the parametric 
estimation algorithm, the non-parametric estimation algorithm, and the non-parametric estimation algorithm for 
work in the presence of distortions in measurement instants. Each of them works effectively under only its own 
assumption, but all the algorithms use the information redundancy that appears when several radars observe one 
aircraft. 

 
1. In the parametric estimation algorithm, it is supposed that the unknown distortion of the radar data can be 

present as a combination of several known functions. These functions give the structure of the systematic error 
vector field; there are some unknown parameters for fitting this model to the data. For the systematic error in 
range and azimuth, we describe such a field as follows:  

 
3, 1, , ( ) ( , ), ( ) ( , )r r

i i i ix R i m x x x x          D D . (3) 
  

Here, the symbol  denotes the column vector of unknown parameters. For the Cartesian coordinate system, we 
use another description:  



 
3, 1, , ( ) ( , )i ix R i m s x x     S . 

 
(4) 

The simplest example of the parametric model is the model of the constant systematic errors in the range 
and azimuth. In this case, equation (3) turns into expression  
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In this algorithm, each aircraft trajectory is analyzed separately and gives the individual estimate for 
parameters in the model of the systematic errors. The evaluation procedure consists of minimization of the mean 
square error. The main version of the algorithm uses nonlinear mapping  and physical constraints on the 

aircraft motion parameters. These circumstances lead to using numerical procedures in optimization. We apply a 
method that combines the gradient descent in some variables with the Hooke-Jeeves pattern search method (with 
additional using of the Monte-Carlo method) in other directions. In the case of the linearized model of 
observation (i.e., when the mapping  is linearized), the minimum point of the functional can be evaluated 

analytically. A version of the algorithm with such a simplification was elaborated.  

id

id

In the second stage of the algorithm, the set of the individual estimates    for all aircraft is analyzed by 

means of a statistical procedure to give the final estimate ̂  of parameters   and the estimates for the 

systematic error fields , , ˆ ( )r
i  ˆ ( )i

  ˆ ( )is  . It should be noted that the final estimates for the fields do not have to 

be in the same parametric form 
 

3, 1, ,x R i m             , ˆˆ ( ) ( , )r r
i ix x  D ˆˆ ( ) ( , )i ix x   D , ˆˆ ( ) ( , )i is x x S .  

 

For example, the field estimate ˆ ( )r
i x , ˆ ( )i x  with piecewise-constant dependence on x  shows good 

agreement with the real data. This estimate is obtained by the averaging of individual estimates in small 
geographic areas with taking into account the number of measurements in every area.  
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2. The non-parametric estimation algorithm is related to the case when the model of the systematic errors in 
the form (3) or (4) is unknown, or the results of the algorithm from the previous section cannot adequately 
correct the measurements of radars. The non-parametric estimation algorithm does not use any prescribed model 
of the systematic errors. There are two stages of this algorithm: the first stage consists of evaluation of 
uncertainty sets, the second one is in selection of a single-valued function as the final estimate.  

The uncertainty set is a set of “mean” vectors in the shift space for all variants of the systematic errors, 
which are compatible with the radar measurements at specific spatial location. Now we try to explain this fact by 
a picture. In the Figure there are measurements , ,  of three radars at the same time instant. Even in the 

case of measurements without random noise, there are many variants of the true location of the aircraft. Three of 
them are shown in the figure. If we do not know any a priori information 
about values of the systematic error shifts 

1z 2z 3z

is , the true location x  of the 

aircraft can be anywhere near the measurements , , . However, the 

only one variant of the shifts 
1z 2z 3z

1s , 2s , 3s  corresponds to every location x . If 

the measurements have random noise, we can consider the correspondence 
between x  and the average values of 1s , 2s , 3s . Since x  be ngs to 2D plane 

in 3D space (this plane corresponds to the altitude h  of he aircraft), we get 

an 2D affine manifold S  n the space of vectors s s

lo

 t

i 1 2
T Ts s3

TT     by 

choosing arbitrary x  and corresponding average 1s , 2s , 3s . The manifold S  

is named as the uncertainty set.  

 

In the algorithm, the uncertainty sets are constructed for the specific mesh of “small” geographic areas. 
Every uncertainty set  exploits only local radar measurements from its own small area. The procedure of 
construction of the uncertainty set uses radar measurements at the same instant; but, actually, different radars 
never measure location of the aircraft at the same instant. For this reason, we make the “artificial” measurements 
approximating every radar track by means of polyline. Every uncertainty set  is attached to the center of 
corresponding “small” area. So, we can consider the sets as a multi-valued function  that corresponds to all 

variants of the systematic error fields, which satisfactory fit the data.  

S

S
( )S x

The second stage of the non-parametric estimation algorithm is related to searching a single-valued 
function ( )s   of the systematic errors. In this searching, a more "weak” knowledge than parametric models (3) or 

(4) can be used for the systematic error functions. For example, we can require that the functional of the integral 
spatial slope of the function ( )s   should have small values. Presently, this algorithm uses the functional of the 

mean-square variation.  
 

3. The third algorithm has the same stages and similar constructions as the non-parametric estimation 
algorithm in the Section 2; but it does not use the instants of radar measurements. The uncertainty sets are 
constructed in a special way. Firstly, all aircraft trajectories are divided into sections of the straight line motion. 
Then for each section, the direction of the motion is estimated by means of the principal component analysis 
method [3]. The shift vectors of the systematic errors have components along this direction of motion, but their 
determination are not possible since distortions in measurement instants are equivalent to spatial shift of the 
measurements along this direction. All variants of the systematic error shifts along all remaining components are 
combined into uncertainty sets. Other constructions of this algorithm completely repeat corresponding 
constructions of the previous non-parametric estimation algorithm. 
 
Conclusions 
 

The program package is implemented in MATLAB. Correctness of the work of the algorithms is checked 
on the model and real radar data.  
 

Investigations were performed under collaboration with NITA LLC. The reported study was supported by the 
Russian Foundation for Basic Research, project no. 15-01-07909. 
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