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Reachable set for Dubins car and its application
to observation problem with incomplete information

Valerii S. Patsko1 and Andrey A. Fedotov2

Abstract— A three-dimensional reachable set “at the instant”
for a controlled object called the Dubins car is considered. The
turn angular velocity of the linear velocity vector is a control
variable. Along with the case when, according to the statement
of the problem, rotation is possible in both directions, the cases
of one-sided rotation are studied. Three-dimensional images
of reachable sets are presented. Sufficiency of the Pontryagin
maximum principle conditions for the control leading to the
boundary of the reachable set is analyzed. Possibility of using
reachable sets in the problem of motion observation under
conditions of inaccurate measurements of the geometric position
is considered.

I. INTRODUCTION AND PROBLEM
FORMULATION

Reachable set is one of the central concepts of the contem-
porary mathematical control theory [1], [2]. The reachable
set G(tf ) “at an instant” tf for a given initial phase state x0,
y0, ϕ0 can be defined as a collection of all phase states of
system (1) that can be reached by means of admissible con-
trols at the instant tf . In order to avoid misunderstandings,
we emphasize the difference between the reachable set at the
instant (which is considered in this paper) from the reachable
set “up to the instant”. The latter is the union of reachable
sets “at the instant” on the interval [t0, tf ].

It is remarkable that any admissible open-loop control
leading to the boundary of the reachable set satisfies the
Pontryagin maximum principle [2]. This “extremality” prop-
erty is used in the paper to find the reachable set. Effective
description of reachable sets, in turn, can be used in a variety
of optimal control problems, motion observation, and conflict
dynamic tasks.

Among the models of controlled motion most commonly
used in robotics and applied aviation works the “Dubins car”
is very popular [3] – [12]. In this model, which describes
the motion of a point object on a plane, the value of the
linear velocity is constant, and the value of the instantaneous
angular velocity is limited both from below and from above.
The latter is equivalent to a limit on the instantaneous turning
radius.

Dynamics of the Dubins car is described by the third order
system of differential equations

ẋ = cosϕ,
ẏ = sinϕ,
ϕ̇ = u, u ∈ [u1, u2].

(1)
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Here, x, y are the coordinates of the object geometric
position, ϕ is the velocity direction angle counted counter-
clockwise from the axis x (Fig. 1), u is a scalar control. The
value of the linear velocity equals unit. The magnitude u1 is
a parameter of the problem and satisfies the inequality

−u2 ≤ u1 < u2. (2)

We assume that u2 = 1.

 

 

Fig. 1. The coordinate system, V= (ẋ, ẏ)T

Any controlled system of the third order that describes a
motion in the plane with non-zero constant linear velocity
and some given range of the turn angular velocity can be
reduced to representation (1), (2) with u2 = 1. To do this,
one needs to rescale the geometric coordinates and the time.

As feasible controls u(·), we consider measurable func-
tions depending on time and having their values u(t) from
the segment [u1, u2]. It is assumed that the angular coordi-
nate ϕ takes its values in the interval (−∞,∞).

When studying the reachable set G(tf ) at the instant tf
for a one-point initial phase state, without loss of generality,
we consider it zero at the initial instant t0 = 0: x0 = 0,
y0 = 0, ϕ0 = 0 .

We consider the following cases:
a) u1 = −1, u2 = 1; b) −1 < u1 < 0, u2 = 1;
c) u1 = 0, u2 = 1; d) 0 < u1 < u2 = 1.

In [13], the projection of the reachable set into the
plane x, y is described for the case a). Some results of
investigation and construction of three-dimensional reachable
sets for cases a) – d) have been considered in the previous
papers [14] – [18].

Investigation of reachable sets up to the instant is associ-
ated with time-optimal problems. For the cases of a) and
b), the construction of such sets was studied in [4], [19].
There are works (see, for example, [20]), in which images
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of the three-dimensional reachable sets up to the instant
were obtained by using numerical methods developed for
the Hamilton – Jacobi type equations.

A new result of this work is the analysis of the convexity
property of sections by the angular coordinate (ϕ-sections)
for the three-dimensional reachable set G(tf ). This property
is specific for the cases c) and d), but it is absent for
the cases a) and b). The convexity property of ϕ-sections
is related to the sufficiency of the Pontryagin maximum
principle conditions for controls leading to the boundary
of the reachable set G(tf ). Corresponding facts are also
formulated in this paper.

As a natural application of reachable sets, the paper
considers the construction of information sets [21] in the
problem of motion observation.

Let measurements of the object current state in the plane
x, y come with some time step. The maximal magnitude of
the measurement error is given. The third coordinate, which
is the current course angle, is unobservable.

As the information set I(t) at an instant t, one consider a
collection of all three-dimensional phase states of system (1)
consistent with all measurements got up to the instant t.
The exact construction of information sets is hardly possible.
But, reasonably applying the convexification procedure, one
can construct a satisfactory upper estimate in the form of
sets I(ti) ⊃ I(ti) with convex sections at the angular
coordinate ϕ.

The suggested recurrent procedure for constructing sets
I(ti+1) for a discrete measurement sample is the following.
Let the set I(ti) is known for some instant ti. For the
instant ti+1, a three-dimensional forecast set G(ti+1, I(ti))
is constructed by means of phase states of system (1)
reachable from the given (at the instant ti) set I(ti). On
the basis of the measurement that comes at the instant ti+1,
the uncertainty set H(ti+1) is constructed of all states
consistent with this measurement (with its value and maximal
error magnitude). The new set I(ti+1) is the intersection
G(ti+1, I(ti))

⋂
H(ti+1).

The described procedure for constructing the information
sets implements the classic predictor/corrector scheme in the
theory of observation with discrete input of measurements.

A practical construction of the information sets for sys-
tem (1) is based on their representation as a collection of
two-dimensional sections by planes orthogonal to the angular
coordinate. To compute numerically such reachable sets one
needs a very good idea about their geometric structure in the
case of one-point initial set.

The paper is organized as follows. In Section II, we
consider types of motions, which go onto the boundary
of the reachable sets. Section III deals with a description
of the boundary of reachable sets including description of
boundaries of the angular sections. In Section IV, we suggest
a method for constructing an upper estimate of information
sets, which is based on simple operations with convex sets in
the plane. An example of numerical construction of a forecast
set is given.

II. CONTROLS LEADING THE SYSTEM ONTO
THE BOUNDARY OF REACHABLE SET

We will use the fact that the controls that lead the system
onto the boundary of a reachable set G(tf ) at the instant tf
obey the Pontryagin maximum principle (PMP).

Let u∗(·) be some admissible control and
(x∗(·), y∗(·), ϕ∗(·)) be the motion of system (1) generated
by this control in the interval [t0, tf ]. The adjoint differential
equations [4], [14], [19] are

ψ̇1 = 0,

ψ̇2 = 0, (3)
ψ̇3 = ψ1 sinϕ

∗(t)− ψ2 cosϕ
∗(t).

PMP means that there is a non-zero solution
(ψ∗1(·), ψ∗2(·), ψ∗3(·)) to system (3), for which the condition

ψ∗1(t) cosϕ
∗(t) + ψ∗2(t) sinϕ

∗(t) + ψ∗3(t)u
∗(t)

= max
u∈[u1,u2]

[ψ∗1(t) cosϕ
∗(t) + ψ∗2(t) sinϕ

∗(t) + ψ∗3(t)u]

holds almost everywhere (a.e.) in the interval [t0, tf ], or, what
is the same,

ψ∗3(t)u
∗(t) = max

u∈[u1,u2]
ψ∗3(t)u a.e. in [t0, tf ]. (4)

The functions ψ∗1(·) and ψ∗2(·) are constants. Denote them
by ψ∗1 and ψ∗2 .

If ψ∗1 = 0 and ψ∗2 = 0, then ψ∗3(t) = const 6= 0 in the
entire interval [t0, tf ]. In this case, one has u∗(t) = u1 a.e.
in [t0, tf ] or u∗(t) = u2 a.e. in [t0, tf ].

Let us assume that at least one of the numbers ψ∗1 , ψ∗2
does not equal zero. Using the equations of dynamics (1)
and adjoint equations (3), one can write a relation for ψ∗3(t):

ψ∗3(t) = ψ∗1y
∗(t)− ψ∗2x∗(t) + C.

Hence, ψ∗3(t) = 0 if and only if the point (x∗(t), y∗(t))T

of the geometric position at the instant t obeys the linear
equation

ψ∗1y − ψ∗2x+ C = 0. (5)

So, ψ∗3(t) > 0 in the half plane ψ∗1y − ψ∗2x+C > 0, and
ψ∗3(t) < 0 in the half plane ψ∗1y − ψ∗2x+ C < 0.

Since change of the sign of ψ∗3(·) implies change of the
control from one extremal value to the another, the line
defined by (5) is often called the switching line.

Due to relation (4), if ψ∗3(t) > 0 in some interval, then
u∗(t) = u2 a.e. in this interval. The projection of the corre-
sponding motion into the plane x, y goes counterclockwise
along a circular arc of radius 1/u2. If ψ∗3(t) < 0, then
u∗(t) = u1. The projection of the corresponding motion
goes clockwise along a circular arc of radius 1/|u1| when
u1 < 0, counterclockwise when u1 > 0, and is rectilinear
when u1 = 0.

If ψ∗3(t) = 0 in some interval, then the mo-
tion (x∗(·), y∗(·)) in this interval goes along the switching
line (5). With that, u∗(t) = 0 a.e. in the interval. Such a case
is impossible when u1 > 0.
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Typical variants of motions on the x, y plane with the
corresponding switching lines for u1∈(−1, 1) are given
in [17].

Thus for system (1), any motion obeying PMP has a
projection into the plane x, y, which consists of circular arcs
and straight line segments. Within each of the arcs or seg-
ments, the control can be considered as a constant. So, during
analysis of controls obeying PMP, one can consider only
piecewise constant controls (assuming the right-continuity
at points of discontinuity). The number of switchings in the
interval [t0, tf ] is finite.

For the cases a) and b) of the problem formulation, the
following theorem is valid.

T h e o r e m 1 [14], [17]. It is possible to lead system (1)
to any point of the boundary of the reachable set by means
of a control having no more than two switchings. With that,
in the case of exactly two switching, one can consider only
six variants of the control sequences:

1) u2, 0, u2; 2) u1, u2, u1; 3) u2, u1, u2;
4) u1, 0, u1; 5) u1, 0, u2; 6) u2, 0, u1.

(6)

Let us note that options (6) coincide with the optimal
controls pointed out for a time-optimal control problem
in [3]. Each of the intervals, on which the constant control
operates, can degenerate.

T h e o r e m 2 [16], [17]. Let u1 = 0. Then any point
on the boundary of the reachable set of the system (1) can
be attained by using a piecewise constant control u∗(·) that
takes the values u1 = 0 and u2 = 1 with no more than
two switchings. There are two possible sequences of controls
here:

1) 1, 0, 1; 2) 0, 1, 0.

Let u1 > 0. Then the possible number of the control
switchings grows with increasing tf ; however, there is a finite
number of switchings for any finite tf . Investigation of this
case is given in [18].

As a result, for all four considered variants of the value u1,
we have descriptions of the control functions u(·) leading the
system onto the boundary of the reachable set. These descrip-
tions are constructive and allow one to obtain the boundary
of a reachable set in the three-dimensional space as a finite
collection of pieces of smooth surfaces. Corresponding parts
of the boundary are represented as two-parametrical families
of points [14].

In general, the boundary of the three-dimensional reach-
able set is not smooth. However, its particular pieces formed
by similar controls are smooth. In some cases (but not
always), the conjugation of such pieces is also smooth.

Pictures of the obtained reachable sets for the instant
tf = 3π and values u1 = −0.25, 0.0, 0.25 are shown in
Fig. 2. Enumeration of the colours of the boundary parts
corresponds to the list of controls (6). The lowest point of
all three sets is the same and corresponds to a motion with
the constant control u(t)≡u2 = 1.
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4)- 
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Fig. 2. Reachable sets for tf = 3π with different values of u1 and the
same value of u2 = 1

III. ANGULAR SECTIONS OF REACHABLE SET

We describe sections of a reachable set G(tf ) by plane
orthogonal to the angular axis ϕ (angular sections or
ϕ-sections) for different cases.

∗ Let 0 < u1 < u2 = 1 (the case d). In this case, a
number of switchings of controls leading the system onto the
boundary of a reachable set grows with increasing tf . But
with that, the ϕ-sections are strictly convex. The convexity
property of the ϕ-sections was noticed at the first time
during a numerical simulation [17] and theoretically proved
later [18]. Also, we have established that the boundary of
any ϕ-section consists of four types of arcs: SB, BB, SS,
BS. Each of the types has an analytical description. Possible
variants of their conjunction are shown schematically in
Fig. 3.

BB 
SS 

BS SB 

SS 
BB 

φ-section 
coloring 

Fig. 3. Possible variants of the structure of an angular section
when u1 ∈ (0, 1), u2 = 1

An arc of the type SB is generated by means of the
piecewise constant controls having the value u2 in the first
time interval and the value u1 in the final interval. A control
producing points from an arc of the type BB has the value u1
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in both first and final time intervals. In the same way,
changing u1 by u2 and vice versa, we obtain arcs of the
types BS and SS.

The number of switchings of a control leading to the same
arc depends on the instant tf and the chosen value of ϕ. For
fixed tf and ϕ, the number of switchings for the arcs of the
types BS and SB is the same. For the arcs of the types BB
and SS, it is either the same or differs by 1.

With chosen direction of the boundary (clockwise or
counterclockwise), four variants of the arc sequence are
possible:

SB, BB, BS, SS; SB, BB, BS, BB;
SB, SS, BS, SS; SB, SS, BS, BB.

Depending on tf and ϕ, some arcs can degenerate. With
that, the arcs of the types BS and SB degenerate simultane-
ously. In work [18], it is shown that there are 11 types of
the ϕ-sections.

In Fig. 4, one can see some examples of the reachable
sets G(tf ) for u1 = 0.5, u2 = 1, and three instants tf = 6π,
10π, 20π. The colors of parts of the boundary correspond to
the ones in Fig. 3. The same color may occur several times
because the number of switchings changes with changing ϕ.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

π20=ft

π10=ft

π6=ftx

y

ϕ

Fig. 4. Reachable sets for the case of one-sided turn when u1 = 0.5,
u2 = 1

∗∗ Let u1 = 0 and u2 = 1 (the case c). This case is
the simplest one. Each ϕ-section is either a circle (when
ϕ ≥ 2π regardless of tf ), or a circular segment (a circle cut
by a chord) if ϕ < 2π [16], [17]. Thus, in this case, the
ϕ-sections are convex.

∗ ∗ ∗ Let u1 = −1 or −1 < u1 < 0; u2 = 1 (the
cases a and b). In this situation, the boundary of a ϕ-section
is generated by six control types mentioned in Section II of
the paper. The ϕ-sections can be non-convex or even non-
simply connected. In Fig. 5, examples of the ϕ-sections are
shown for u1 = −1, tf = 3.564. The section is non-simply
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Fig. 5. Two-dimensional ϕ-sections of the reachable set for u1 = −1,
u2 = 1, tf = 3.564

connected when ϕ = 0.3. But for ϕ = 0 and ϕ = 0.15, the
sections are simply connected. The colors correspond to the
ones in Fig. 2.
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Validity of PMP is a necessary condition for controls
leading onto the boundary of a reachable set. Generally
speaking, this condition is not sufficient for the Dubins car.
It is proved that, in each of the cases a) and b), there is a
piecewise constant open-loop control obeying PMP, but the
corresponding trajectory is in the interior of the set G(tf )
at the instant tf , i.e., in the interior of a ϕ-section. For
the cases c) and d), it is verified that PMP is the sufficient
condition for a control to lead the motion onto the boundary.
It stands out that the sufficiency is connected with convexity
of the ϕ-sections. For the case d), the ϕ-sections are strictly
convex. It is established that in this case a piecewise constant
open-loop control satisfying PMP determines a single motion
leading to the corresponding point on the boundary of the
set G(tf ). The connection between PMP and the convexity
property of ϕ-sections is shown in Fig. 6.

Convexity and, even more so, strict convexity of the
ϕ-sections, can be used in analyzing the sufficiency of the
PMP in various optimization problems, in which the motion
of an object is described by system (1), (2) with constraints
of the form c) or d) on control u. Such tasks include, for
example, the time-optimal problem where the control goal
is the shortest transition of the system onto a convex closed
set in the geometric coordinates. Under this, at the instant of
transition, the angle ϕ must take the specified value.

 

 
 

Fig. 6. The Pontryagin maximum principle and the convexity property of
the ϕ-sections of the reachable set

IV. APPLICATION TO OBSERVATION PROBLEM

In Sections II and III, the initial set was a point in
the three-dimensional space. But solving the problem of
observation, one needs to construct a reachable set for an
arbitrary initial set. Analogously as it was made in [22], we

use an approximation of a reachable set by a collection of
plane convex approximations of the ϕ-sections. An angular
section of a reachable set G corresponding to the value ϕ is
denoted by Gϕ. The collection of all non-empty ϕ-sections
of the set G(t) is denoted by {Gϕ(t)}. The same denotations
are used also for the angular sections of upper estimate
information sets. For example, Iϕ(t) is the angular section
of the set I(t) corresponding to the value ϕ. The convex hull
of a set A in the plane x, y is denoted by conv(A).

Let an upper estimate information set I(ti) be given at an
instant ti. We assume that it has convex ϕ-sections. Below, a
procedure for constructing the upper estimate G(ti+1, I(ti))
for the reachable set G(ti+1, I(ti)) at an instant ti+1 > ti is
described. The set G(ti+1, I(ti)) is called the forecast set.

Taking into account the ideas from Section III, we suppose
that we have description of entire collection {Gϕ(tf )} of all
non-empty ϕ-sections Gϕ(tf ) of the reachable set for one-
point initial set (x0 = 0, y0 = 0, ϕ0 = 0). Let us denote by
Gϕ(tf , ϕ0) the corresponding ϕ-section of the reachable set
at the instant tf for the initial state x(t0) = 0, y(t0) = 0,
ϕ(t0) = ϕ0. The set Gϕ(tf , ϕ0) is the set Gϕ(tf ) turned by
the angle ϕ0 around the origin.

Let us take the instant ti as the initial one, and the
instant ti+1 as tf . Consider the states of the system in the
plane x, y at the instant ti as the section Iϕ∗(ti) of the set
I(ti) for some ϕ∗. Then for any ϕ such that

Gϕ(ti+1, ϕ∗) 6= ∅,

the collection of all possible states at the instant ti+1 can be
written as an algebraic sum (the Minkowski sum)

Iϕ∗(ti) +Gϕ(ti+1, ϕ∗).

It is possible due to absence of the variables x, y in the
right-hand side of system (1). Further, let us take the union
over all ϕ∗ such that Iϕ∗(ti) 6= ∅, Gϕ(ti+1, ϕ∗) 6= ∅, and
convexify it:

Gϕ(ti+1, I(ti))= conv
⋃

ϕ∗∈{ϕ∗(ti)}

[Iϕ∗(ti) +Gϕ(ti+1, ϕ∗)] .

The forecast set Gϕ(ti+1, I(ti)) defined by its ϕ-sections
gives an upper approximation for the collection of phase
states of the system at the instant ti+1 consistent with
dynamics (1) and the given set I(ti). The angular sections of
the upper estimate information set I(ti+1) are obtained by
intersection of the ϕ-sections of the set Gϕ(ti+1, I(ti)) with
the uncertainty set H(ti+1) of the next measurement in the
plane x, y:

Iϕ(ti+1) = Gϕ(ti+1, I(ti))
⋂
H(ti+1).

At the instant t0, we assume that the convex uncertainty set
H(t0) is known. For reasonable causes, we fix a set {ϕ(t0)}
of values for the coordinate ϕ. Let I(t0) = H(t0)×{ϕ(t0)}.

Assuming convexity of the sets H(ti+1), we obtain convex
sections of the set I(ti+1).
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In a practical implementation of this procedure, we use
some fixed grid in the angular coordinate ϕ. The exact
convex hull can be replaced with an upper approximation
in the plane x, y by polygons having a given collection of
the outer normal vectors to their edges.

Figure 7 shows the forecast set G(t1, I(t0)) in three views,
computed for the case a) when u1 = −1. The initial set
I(t0) was taken with only one ϕ-section in the form of a
square H(t0), which sides are parallel to the axes x, y and
are equal to 2/3. The forecast instant t1 equals π. Some
collection of ϕ-sections Gϕ(t1, I(t0)) of the set G(t1, I(t0))
is highlighted with black lines.

x

y

y
y

x

ϕϕ ϕ

x

Fig. 7. An example of the forecast set: three views

V. CONCLUSIONS

In a mathematical model of controlled motion called
the Dubins car, two coordinates have the meaning of the
geometric position of a point object in a plane, and the
third coordinate is interpreted as the direction angle ϕ of
the linear velocity vector. Rate of change of the angle ϕ
is a control variable. The paper has analysed ϕ-sections
of the three-dimensional reachable set at the instant for
the Dubins car. Cases when the ϕ-sections are convex are
distinguished. Computer images of reachable sets at the
instant are presented. In the future, it is planned to develop
an algorithm for constructing information sets in the problem
of observing the Dubins car with inexact measurements of
the geometric position.
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