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Abstract
This paper discusses time-optimal games with lifeline and corresponding boundary value
problems for Hamilton–Jacobi equation as well. Existence of the value function for the time-
optimal games with lifeline is proved. Existence of a minimax solution and its coincidence
with the value function are shown.

Keywords Time-optimal differential games · Games with lifeline · Value function ·
Hamilton–Jacobi equations · Minimax solutions

1 Introduction

This paper investigates time-optimal differential gameswith lifeline, the question of existence
of the value function of a game of such a kind, and the connection between the value function
and a minimax solution of the corresponding Hamilton–Jacobi equation (HJE). In games
of this type, the first player tends to lead the system to a prescribed closed target set while
keeping the trajectory inside some open set, where the game takes place. The second player
hinders this, because it wins as soon as either the trajectory of the system leaves this open set
not touching the target one, or it succeeds in infinitely keeping the system inside this open
set.

Apparently, the first, who formulated a problem with lifeline, was Isaacs in his book [11].
In his definitions, the lifeline is a set, after reachingwhich the second playerwins uncondition-
ally. Significant contribution into researching gameswith lifeline wasmade by Petrosyan (see
e.g., [14]). However, authors are not familiar with works, which would exhaustively consider
games of this sort: Petrosyan generally researched problems with simple motions dynamics.
In books [12,13] of Krasovskii and Subbotin, such games are analyzed as problems with state
constraints: The first player is not supposed to lead the system outside a prescribed set. Also,
problems with state constraints have been studied by many authors (see, e.g., [3–5,10,15]).

Problems very close to games with lifeline have been studied by French authors
Cardaliaguet, Quincampoix, Saint-Pierre [6–9]. For controlled systems on the basis of the
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set-valued analysis, the theory of differential inclusions, and the theory of viability, they
analyzed the sets where the controller is able to keep the system forever (viability kernels).
Passing to games, the authors considered a situation with two target sets for the first and sec-
ond players, respectively, to which the players try to guide the system avoiding the target of
the opposite player. Another variant considered in these works is games with state constraints
for the first player. In these situations, the main objectives are to study victory domains of
the players, that is, the sets wherefrom the corresponding player can reach its target with-
out hitting the target of the opposite player (or state constraints). Also, in their works, the
upper value function of such games (the guaranteed result of the first player) is characterized
in the terms of viability as a function, which epigraph is a viability set of the first player.
Grid-geometric algorithms have been suggested for approximation of viability kernels and,
therefore, for approximation of the upper value. However, we have not found papers of these
authors, where existence of the value function is proved for games of this type and/or its
coincidence with the generalized solution of the corresponding boundary value problem of
HJE is proved (although such a connection is mentioned).

The main boost that stimulated the authors for study of time-optimal games with life-
line is the investigation of questions connected to numerical methods for solving classic
time-optimal games. In particular, in works [1,2], Italian mathematicians Bardi and Falcone
suggested a theoretic numerical method for constructing the value function of a time-optimal
game as a generalized (viscosity) solution of the corresponding boundary value problem for
HJE. The suggested procedure is of grid character, and its proof has beenmade in assumption
that the grid is infinite and covers the entire game space. But a practical computer realization,
apparently, deals with a finite grid, which covers only a bounded part of the game space. So,
the problem arises of what boundary condition to set on the outer boundary of the domain
covered by the grid. Bardi and Falcone suggested to set these conditions to plus infinity. So,
they actually declared that the second player wins when reaching the outer boundary of this
domain. Therefore, the practical realization of the procedure solves a gamewith lifeline. That
is why the authors decided to fill this gap connected to the problems with lifeline in a very
general formulation.

This paper discusses various aspects of the time-optimal games with lifeline: existence of
the value function, existence of a generalized solution of the corresponding boundary value
problem for PDE of Hamilton–Jacobi type, and the coincidence of the value function and the
generalized solution. In comparison with the French authors, the main tool used in the paper
is the concept of stability (which, however, is quite close to the concept of viability). During
consideration of HJE, the authors involve the concept of minimax generalized solution and
results by Subbotin [16].

The structure of the paper is the following. In Sect. 2, we state the time-optimal problem
with lifeline and define the result of the game and necessary conditions. In Sect. 3, we
introduce the value function of this problem and prove that the value function exists. In
Sect. 4, we give basic definitions of minimax solutions and prove that the minimax solution
of the corresponding boundary value problem for HJE exists under some conditions. In
Sect. 5, we show that the value function of a time-optimal game with lifeline coincides with
theminimax solution (under the same conditions). Finally, in Sect. 6, we give some comments
on classic time-optimal games.
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2 Problem Formulation

Let us consider a system, whose dynamics is

ẋ = f (x, a, b), t ≥ 0, a ∈ A, b ∈ B, (1)

where x ∈ R
n is the phase vector of the system; a and b are the controls of the first and

second player. We are given a compact set T and an open set W such that T ⊂ W and the
boundary ∂W is bounded. Denote G := W \ T and F := R

n \ W . (Here and below, the
symbols “:=” and “=:” mean “is equal by definition” where the variable to be defined is at
the side of the colon.) The set T is the target set; in the set G, the game takes place; the set
∂F = ∂W is the lifeline where the second player wins unconditionally (see Fig. 1). In other
words, the objective of the first player is to guide the system to the set T as soon as possible
keeping the trajectory outside the set F ; the objective of the second player is to guide the
system to the set F , or if it is impossible, to keep the trajectory inside the set G forever, or if
the latter is impossible too, to postpone the reaching the set T as long as he can.

The players’ aims of this kind can be formalized in the following way. Let x(·; x0) be the
trajectory emanated from the initial point x(0) = x0. We consider two instants

t∗ = t∗
(
x(·; x0)

) = min
{
t ≥ 0 : x(t; x0) ∈ T

}
,

t∗ = t∗
(
x(·; x0)

) = min
{
t ≥ 0 : x(t; x0) ∈ F

}
,

which are the instants when the trajectory x(·; x0) for the first time hits the sets T and F ,
respectively. If the trajectory does not arrive at the set T (F), then the value t∗ (t∗) is equal
to +∞. We define the result of the game as

τ
(
x(·; x0)

) =
{

+∞, if t∗ = +∞ or t∗ < t∗,
t∗, otherwise.

(2)

We assume that the following conditions are fulfilled:

C.1 The function f : Rn × A × B �→ R
n is continuous and is Lipschitz continuous on the

variable x : for all x (1), x (2) ∈ R
n , a ∈ A, b ∈ B

∥∥ f (x (1), a, b) − f (x (2), a, b)
∥∥ ≤ λ‖x (1) − x (2)‖; (3)

moreover, it satisfies Isaacs’ condition:

min
a∈A

max
b∈B

〈
p, f (x, a, b)

〉 = max
b∈B min

a∈A

〈
p, f (x, a, b)

〉 =: H(x, p) ∀ p ∈ R
n . (4)

Here and below, the symbol 〈·, ·〉 stands for scalar product.

Fig. 1 Sets T , F , and G

G

T

F
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C.2 A and B are compact metric spaces.
C.3 The boundary ∂G (that is the boundaries ∂T and ∂F) is smooth.
C.4 The boundary ∂T of the set T and the function f obey the following condition:

min
a∈A

max
b∈B

〈
nT (x), f (x, a, b)

〉
< 0

for every point x ∈ ∂T . Here and below, the symbol nA(x) denotes an outward normal
vector to the setA at the point x , which has a unit length. In terms of Isaacs’ book [11],
this condition means that the boundary ∂T is an admissible zone for the first player: If
the system is at the boundary of the terminal set T , then the first player can guarantee
leading the trajectory of the system inside the set.

C.5 The boundary ∂F of the set F and the function f obey the following condition:

min
a∈A

max
b∈B

〈−nF (x), f (x, a, b)
〉
> 0

for every point x ∈ ∂F . This relation means that if the system is situated at any point
of the boundary of the set F , then the second player can direct the system motion into
the set F .

3 Value Function

Let us introduce the value function of a time-optimal problem with lifeline in the same way
as it is described in [12,13].

We denote Tε = T , Fε = F + Bε , Gε = Rn \ (Fε ∪ Tε). Here and below, Bε is a closed
ball with the radius ε and the center at the origin. The sign “+” for set operands means the
algebraic sum (the Minkowski sum). The value of ε is taken such that the set Gε is not empty.
For a trajectory x(·) of the system, we define a functional

τε

(
x(·)) := min

{
t ∈ R

+ : x(t) ∈ Tε, ∀ ϑ ∈ [0, t) x(ϑ) ∈ Gε

}
. (5)

Again, if the trajectory never reaches the set Tε or reachesFε earlier than Tε , then τε

(
x(·)) =

+∞.
Take a feedback strategy of the first player A : Rn → A (an arbitrary function mapping

R
n to A), an initial point x0 ∈ R

n , and a time partition

Δ = {0 = t1 < t2 < t3 < . . . }.
Denote by X(x̄,A,Δ) the set of stepwise motions emanated from the point x̄ under the
strategyA applied in a discrete control scheme with the time partitionΔ. Each of them obeys
the differential equation

ẋ(t) = f
(
t, x(t),A

(
x(ti )

)
, b(t)

)
, ti ≤ t < ti+1, i ∈ N, (6)

and the initial condition x(0) = x̄ for some measurable second player’s control realization
b(·) : [0,∞) → B. The elements of this set are absolutely continuous functions x(·) :
[0,∞) → R

n . Define

diamΔ = sup
i∈N

(ti+1 − ti ).

Take a sequence of points x̄l → x0 as l → ∞, a sequence of partitions Δl such that
diamΔl → 0 as l → ∞, and a sequence xl(·) ∈ X(x0,l ,A,Δl) of stepwise motions. If{
xl(·)

}
uniformly tends to some function x∗(·) as l → ∞, then this limit function x∗(·)
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is called a constructive motion generated by the strategy A [12, p. 33], [13, p. 107] and is
considered as a trajectory of the system. The set of all constructive motions emanated from
the point x0 under the first player’s strategy A is denoted by X(x0,A). The set X(x0,A) is
non-empty and sequentially compact in C

([0,∞);Rn
)
, that is, from any sequence xk(·) ∈

X(x0,A), k ∈ N, one can select a converging subsequence xkl (·), l ∈ N, which limit belongs
to the set X(x0,A). Here, the convergence is taken in the sense of compact-open topology
(but not in the sense of ordinary metric of the space C , because the time interval is not
bounded).

Similarly, we define the set X(x̄,B,Δ) of stepwise motions of the system emanated from
the point x0 under the second player’s strategy B in the discrete control scheme with the time
partition Δ and the set X(x0,B) of constructive motions generated by a feedback strategy
B : Rn → B of the evader. For all strategiesB, the setX(x0,B) is non-empty and sequentially
compact in C

([0,∞);Rn
)
(in the compact-open topology).

The guaranteed result T 0
1 (x0) of the first player at the point x0 is defined as follows:

T ε
1 (x0,A) := sup

{
τε

(
x(·)) : x(·) ∈ X(x0,A)

}
,

T ε
1 (x0) := inf

A∈A T ε
1 (x0,A), T 0

1 (x0) := lim
ε↓0 T

ε
1 (x0). (7)

Here and below, A is the set of all feedback strategies of the first player.
In the same way, the guaranteed result T 0

2 (x0) of the second player at the point x0 is
defined as

T ε
2 (x0,B) := inf

{
τε

(
x(·)) : x(·) ∈ X(x0,B)

}
,

T ε
2 (x0) := sup

B∈B
T ε
2 (x0,B), T 0

2 (x0) := lim
ε↓0 T

ε
2 (x0). (8)

Here and below, B is the set of all feedback strategies of the second player.
The following inequalities hold for arbitrary discrete control schemes (A,Δ(1)) and

(B,Δ(2))

T ε
1 (x0,A,Δ(1)) ≥ τε

(
x(·)) ≥ T ε

2 (x0,B,Δ(2)), (9)

for any

x(·) ∈ X(x0,A,Δ(1))
⋂

X(x0,B,Δ(2)).

Hence, T 0
1 (x0) ≥ T 0

2 (x0). Non-emptiness of intersection of the sets of motions is proved
in [12,13,16]. Also, the results of books [12,13] imply the following.

Theorem 1 For all initial positions x0 ∈ R
n and for all sufficiently small ε > 0 in the time-

optimal differential game (1), (5) with lifeline, there exists an instant ωε ∈ [0,∞] such that
T ε
1 (x0) = T ε

2 (x0) = ωε.

Using this result, we can prove the following.

Theorem 2 In the time-optimal differential game (1), (2) with lifeline, the value function
T : clG → R ∪ {+∞} exists that is T (x0) := T 0

1 (x0) = T 0
2 (x0) for all x0 ∈ R

n.

Proof Let us consider the limits of the guaranteed results in ε:

T ε
1 (x0) = inf

A∈A T ε
1 (x0,A), T ε

2 (x0) = sup
B∈B

T ε
2 (x0,B)

T 0
1 (x0) = lim

ε→0
T ε
1 (x0), T 0

2 (x0) = lim
ε→0

T ε
2 (x0).
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Let x0 be such a point that for some ε > 0 and a strategyA of the first player, all trajectories
from the set X(x0,A) reach the set Tε = T remaining in the set cl Gε . Here and below, the
symbol “cl” denotes the closure of a set. Then, for all ε1, ε2 such that 0 < ε1 < ε2 ≤ ε, we
obtain T ε1

1 (x0) = T ε2
1 (x0). If, however, the point x0 is such that for all ε > 0 and strategy A

of the first player, there is a trajectory in the set X(x0,A), which either reaches the set Fε

before hitting the set Tε, or forever stays in the set Gε while missing the set Tε , then we have
that for all ε the result T ε

1 (x0) = +∞. Consequently, magnitudes of the functions from the
family

{
T ε
1 (·)}

ε
at any point x induce a numeric sequence, which finally stabilizes at some

finite or infinite value when ε → 0. Therefore, there is a pointwise limit T ε
1 (·) → T 0

1 (·)
as ε → 0. Since for all ε, the functions T ε

1 (·) and T ε
2 (·) coincide, then also there exists a

pointwise limit T 0
2 (·) as ε → 0 of functions T ε

2 (·), which coincides with T 0
1 (·). This common

limit is an ε-saddle point T of game (1), (2). The term ε-saddle point is thought of as each
player can choose its strategy, which guarantees the result arbitrarily close to the value of T .
By this means, the function T : Rn → R is the value function of game (1), (2). ��

The unboundedness of the value function and cost functional can cause some uneasiness
in numerical research of game (1), (2). For this reason, one often substitutes the unbounded
cost functional with a bounded one by means of Kruzhkov’s transform:

J
(
x(·; x0)

) =
{
1 − exp

(−τ
(
x(·; x0)

))
, if τ < +∞,

1, otherwise.
(10)

In such a case, the value function also becomes bounded and its magnitude belongs to the
range from zero to unity.

4 Minimax Solution

4.1 Preliminary Definitions and Statements

This section uses the following definitions and statements from book [16] necessary hereafter.
Consider a boundary value problem for HJE:

H(x, Dv) − v = 0, x ∈ Ω, (11)

v(x) = σ(x), x ∈ ∂Ω. (12)

Here, Ω is a domain in the space Rn ; Dv denotes the gradient of the function v.

Definition 1 Let us consider variables

d−v(x; g) = lim inf
ε→0

{
δ−1(v(x + δg′) − v(x)

) : δ ∈ (0, ε), ‖g − g′‖ ≤ ε
}
,

d+v(x; g) = lim sup
ε→0

{
δ−1(v(x + δg′) − v(x)

) : δ ∈ (0, ε), ‖g − g′‖ ≤ ε
}
.

These relations define the lower and upper derivatives of the function v at the point x ∈ Ω

at the direction g ∈ R
n .

Definition 2 Sets D−v(x) and D+v(x) defined by equalities

D−v(x) = {
s ∈ R

n : 〈s, g〉 − d−v(x; g) ≤ 0, ∀ g ∈ R
n},

D+v(x) = {
s ∈ R

n : 〈s, g〉 − d+v(x; g) ≥ 0, ∀ g ∈ R
n},

are called the subdifferential and superdifferential of the function v at the point x ∈ Ω .
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Definition 3 A supersolution (subsolution) of equation (11) is a lower semicontinuous
(upper semicontinuous) function v : Ω �→ R satisfying the condition H(x, s) − v(x) ≤ 0
for all x ∈ Ω and s ∈ D−v(x) (H(x, s) − v(x) ≥ 0 for all x ∈ Ω and s ∈ D+v(x)).

Definition 4 A supersolution of problem (11), (12) is a lower semicontinuous function v :
clΩ �→ R satisfying the following conditions:

(i) A restriction of the function v to the set Ω is a supersolution of the equation (11).
(ii) This function satisfies boundary condition (12) and is bounded in clΩ .

Definition 5 A subsolution of problem (11), (12) is an upper semicontinuous function v :
clΩ �→ R satisfying the following conditions:

(j) A restriction of the function v to the set Ω is a subsolution of the equation (11).
(jj) This function satisfies boundary condition (12) and is bounded in clΩ .
(jjj) The function v is continuous at every point x ∈ ∂Ω .

Definition 6 Aminimax solution of problem (11), (12) is a function v : clΩ �→ R satisfying
the relations

lim
k→∞ v(k)(x) = v(x) = lim

k→∞ uk(x), x ∈ clΩ,

where {v(k)}∞1 ({uk}∞1 ) is a sequence of supersolutions (subsolutions) of problem (11), (12).

We set forth the formulation of the theorem of minimax solution existence [16, §18.6,
p.224].

Theorem 3 Assume that the following conditions hold:

H.1 The function H(·, 0) is bounded, that is, for all x ∈ Ω
∣∣H(x, 0)

∣∣ ≤ c.
H.2 The inequality

∣∣H(x, p1) − H(x, p2)
∣∣ ≤ ρ(x)‖p1 − p2‖ holds for all x ∈ Ω and p1,

p2 ∈ R
n; here, ρ(x) = (

1 + ‖x‖)μ and μ is some positive number.
H.3 For any bounded set Δ ⊂ Ω , there exists a constant L(Δ) such that the inequality∣∣H(x1, p)−H(x2, p)

∣∣ ≤ L(Δ)‖x1−x2‖(1+‖p‖) holds for all p ∈ R
n and x1, x2 ∈ Δ.

H.4 The boundary condition function σ(·) is continuous and bounded in ∂Ω .

And also let a subsolution of problem (11), (12) exist in the sense of Definition 5. Then,
there exists a unique minimax solution of problem (11), (12). This minimax solution coincides
with the minimal supersolution.

It should be noted that when we deal with a semicontinuous subsolution of prob-
lem (11), (12), one can change Definitions 4 and 5 and formulate Theorem 4, where existence
of a minimax supersolution is required.

Definition 7 A supersolution of problem (11), (12) is a lower semicontinuous function v :
clΩ �→ R satisfying the following conditions:

(i) A restriction of the function v to the set Ω is a supersolution of Equation (11).
(ii) This function satisfies the boundary condition (12) and is bounded in clΩ .
(iii) The function v is continuous at every point x ∈ ∂Ω .

Definition 8 A subsolution of problem (11), (12) is an upper semicontinuous function v :
clΩ �→ R satisfying the following conditions:

(j) A restriction of the function v to the set Ω is a subsolution of equation (11).
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(jj) This function satisfies boundary condition (12) and is bounded in clΩ .

Note that in comparison with Definitions 4 and 5, the continuity condition is moved from the
definition of a subsolution to the definition of a supersolution.

Theorem 4 ([16], p. 255) We assume that conditions H.1–H.3 hold, and a supersolution of
problem (11), (12) exists in the sense of Definition 7. Then, there exists a continuous minimax
solution of problem (11), (12).

4.2 Minimax Solution of HJE Corresponding to Time-Optimal Problemwith Lifeline

Let us consider anHJE boundary value problem corresponding to time-optimal game (1), (10)
with lifeline:

H
(
x, Du(x)

) − u(x) = 0, x ∈ G, (13)

u(x) = 0 if x ∈ ∂T , u(x) = 1 if x ∈ ∂F, (14)

where H(x, s) = H(x, s) + 1; the function H(x, s) is the Hamiltonian defined by (4).
The aim of this section is to show that this problem has a minimax solution.

Proposition 1 Let Conditions C.1–C.3, and C.5 hold. Then, there exists a function u(x),
which is a subsolution of problem (13), (14) in the sense of Definition 5.

Proof We choose and fix a number ε > 0 and extend the set F by a ball of radius ε:
Fε = F + Bε , Gε = R

n \ (Fε ∪ T ) (see Fig. 2). Again, we suppose that the number ε is
sufficiently small so that the set Gε is non-empty and the boundary ∂Fε is smooth.

We construct the function u : Rn → R in the following manner:

u(x) :=
{
0, x ∈ Gε ∪ ∂T ,

1 − dist(x,F)
ε

, x ∈ Fε \ intF,
(15)

where intF is the interior of the set F .
The constructed function is continuous, and, therefore, it is upper semi-continuous; hence,

conditions (jj) and (jjj) from Definition 5 of the subsolution of the boundary value problem
hold. Moreover, because the boundary of the set F is continuously differentiable, one can
choose a number ε so small that the function u is continuously differentiable at the set

Fig. 2 Sets T , Fε and Gε . The
outer solid line is ∂F , and the
dashed line is ∂Fε

Gε

T

Fε
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Fε \ intF (also at the boundary of this set). We assume that the number ε satisfies this
condition.

Thus, one needs to prove that a restriction of the function u to the set G is a subsolution
of problem (13). For this purpose, we are going to use Definition 3:

H(x, s) − u(x) ≥ 0, ∀ s ∈ D+u(x).

Let us consider three cases:

(i) Let x ∈ Gε. Then u(x) = 0, D+u(x) = {0}.
H(x, s) − u(x) = min

a∈A
max
b∈B

〈
0, f (x, a, b)

〉 + 1 − 0 = 1 ≥ 0.

Here and below, 0 is the origin of the corresponding space.
(ii) Let x ∈ intFε. We assume that the point x0 ∈ ∂F is such that the shortcut from the

point x to the set F is dist(x,F) := ‖x − x0‖.
Then, by reason of continuous differentiability of the boundary of the set F and of the

function u at the set intFε \ F , we get

x − x0 = nF (x0)‖x − x0‖ = nF (x0) dist(x,F).

In this point, the function u(x) = 1 − ε−1 dist(x,F) and

D+u(x) = {∇u(x)
}
, ∇u(x) = −(

ε dist(x,F)
)−1 · (x − x0) = −ε−1nF (x0).

Now we estimate the expression H(x, s) − u(x):

H(x, s) − u(x) = min
a∈A

max
b∈B

〈∇u(x), f (x, a, b)
〉 + 1 − 1 + dist(x,F)

ε

(add and subtract f (x0, a, b))

= 1

ε
min
a∈A

max
b∈B

〈 − nF (x0), f (x, a, b) + f (x0, a, b) − f (x0, a, b)
〉 + dist(x,F)

ε

= 1

ε
min
a∈A

max
b∈B

{〈 − nF (x0), f (x0, a, b)
〉 − 〈

nF (x0), f (x, a, b) − f (x0, a, b)
〉}

+ dist(x,F)

ε

≥ 1

ε
min
a∈A

max
b∈B

{〈 − nF (x0), f (x0, a, b)
〉 − ‖nF (x0)‖ · ‖ f (x, a, b) − f (x0, a, b)‖

}

+ dist(x,F)

ε

≥ 1

ε
min
a∈A

max
b∈B

〈 − nF (x0), f (x0, a, b)
〉 − λε

ε
+ dist(x,F)

ε

≥ 1

ε
min
a∈A

max
b∈B

〈 − nF (x0), f (x0, a, b)
〉 − λ + dist(x,F)

ε

= 1

ε

(
min
a∈A

max
b∈B

〈 − nF (x0), f (x0, a, b)
〉 + dist(x,F)

)
− λ.

The quantity λ is the Lipschitz constant of the function f w.r.t. the argument x from Condi-
tion C.1 [from relation (3)].
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Due to Condition C.5, continuity of the function f , continuity of the vector nF (x) along
the boundary of the set F (because of the continuous differentiability and compactness of
the boundary of the set F), and continuity of the scalar product on its arguments, one can
state that there exists such a number η > 0 that for any point x0 ∈ ∂F the inequality holds:

min
a∈A

max
b∈B

〈 − nF (x0), f (x0, a, b)
〉 ≥ η > 0.

Then, on the basis of the number η, one can choose such a number ε that

1

ε

(
min
a∈A

max
b∈B

〈 − nF (x0), f (x0, a, b)
〉 + dist(x,F)

)
− λ ≥ 0,

and fulfillment of this inequality implies fulfillment of the desired one.

(iii) Let x ∈ ∂Fε. One has u(x) = 0. The point x belongs to the smooth line ∂Fε, where
two smooth branches of the function u(·) join. Therefore, there are two partial limits of
∇u(y) as y → x : the zero vector (if y ∈ Gε) and some vector κ(x) (if y ∈ Fε). Because
the function u(·) has two smooth branches at the point x , one has that D+u(x) is the
convex hull of the set of these two partial limits of ∇u(·) at the point x : D+u(x) =
co

{
κ(x), 0

} = {
γ κ(x) : γ ∈ [0, 1]}. The sign “co” denotes the convex hull of the set

argument.

Let us make a similar estimate:

H(x, s) − u(x) = min
a∈A

max
b∈B

〈
γ κ(x), f (x, a, b)

〉 + 1 − 0

= 1

ε
γ min

a∈A
max
b∈B

〈 − nF (x0), f (x, a, b)
〉 + 1.

Similarly to the previous case, we obtain the following inequality by means of the same
Condition C.5:

H(x, s) − u(x) ≥ γ

(
1

ε
min
a∈A

max
b∈B

〈 − nF (x0), f (x0, a, b)
〉 − λ

)
+ 1,

the right-hand side of which can be made greater than zero for all γ ∈ [0, 1] by choosing the
number ε.

Thus, the inequality fromDefinition 3 is proved for all points from the set G; therefore, the
function u is a subsolution of equation (13). And since the function u satisfies the boundary
condition and is continuous at ∂G, it is a subsolution of problem (13), (14) in the sense of
Definition 5. ��

Thus, under Condition C.5, problem (13), (14) has a subsolution in the sense of Def-
inition 5, and the premises of Theorem 3 hold. Consequently, under this assumption,
problem (13), (14) has a minimax solution.

Now we are going to check that the premises of Theorem 4 hold, where the existence of a
supersolution of problem (13), (14) in the sense of Definition 7 is required (that is, with the
additional assumption on the continuity of the supersolution on the boundary of the set ∂G).

It is worthwhile to say that the existence of the minimax solution already does not require
an accomplishment of Theorem 4. Nevertheless, subsequently, the existence of a continuous
supersolution will be necessary; let us prove it.

Proposition 2 Let Conditions C.1–C.3, and C.4 hold. Then, there exists a function ū(x),
which is a supersolution of problem (13), (14) in the sense of Definition 7.
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Fig. 3 Sets Tε , Gε and F . The
inner solid line is ∂T , and the
dashed line is ∂Tε

Gε

T
Tε

F

Proof In the similar way as while constructing the subsolution, we extend the set T by a ball
with some small radius ε > 0 to get the sets Tε := T + Bε , Gε = R

n \ (F ∪ Tε) (see Fig. 3).
We define a function ū : cl G �→ R in such a way:

ū(x) :=
{
1, x ∈ Gε ∪ ∂F,
dist(x,T )

ε
, x ∈ Tε \ int T .

The function ū is bounded, continuous on the boundary of the set G, and it satisfies the
boundary condition. In virtue of the continuous differentiability of the boundary of the set G,
one can choose sufficiently small ε so that the function ū is continuously differentiable at the
set Tε \ int T and the boundary ∂Tε is smooth. We suppose that such an ε is chosen.

Let us check that ū is a supersolution of problem (13). By Definition 3, the function ū(x)
is a supersolution if the following inequality holds:

H(x, s) − ū(x) ≤ 0, ∀ x ∈ G, ∀ s ∈ D−u(x).

We examine three cases:

(i) Let x ∈ Gε. Then ū(x) = 1, D−ū(x) = {0}.

H(x, s) − ū(x) = min
a∈A

max
b∈B

〈
0, f (x, a, b)

〉 + 1 − 1 = 0 ≤ 0.

(ii) Let x ∈ int Tε . Then, ū(x) = ε−1 dist(x, T ) at the given point; let shortcut from a point
x to the set T is attained at a point x0 ∈ ∂T , that is, dist(x, T ) := ‖x − x0‖.

D−ū(x) = {∇ū(x)
}
, ∇ū(x) = (

ε dist(x, T )
)−1 · (x − x0) = ε−1nT (x0).

Let us estimate the difference H(x, s) − ū(x):

H(x, s) − ū(x) = min
a∈A

max
b∈B

〈∇ū(x), f (x, a, b)
〉 + 1 − dist(x, T )

ε
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(add and subtract f (x0, a, b))

= 1

ε
min
a∈A

max
b∈B

〈
nT (x0), f (x, a, b) + f (x0, a, b) − f (x0, a, b)

〉 + 1 − dist(x, T )

ε

≤ 1

ε
min
a∈A

{
max
b∈B

〈
nT (x0), f (x0, a, b)

〉 + max
b∈B

〈
nT (x0), f (x, a, b) − f (x0, a, b)

〉}

+ 1 − dist(x, T )

ε

≤ 1

ε
min
a∈A

{
max
b∈B

〈
nT (x0), f (x0, a, b)

〉 + max
b∈B ‖nT (x0)‖ · ‖ f (x, a, b) − f (x0, a, b)‖

}

+ 1 − dist(x, T )

ε

= 1

ε
min
a∈A

max
b∈B

〈
nT (x0), f (x0, a, b)

〉 + 1

ε
‖nT (x0)‖ · λ‖x − x0‖ + 1 − dist(x, T )

ε

≤ 1

ε
min
a∈A

max
b∈B

〈
nT (x0), f (x0, a, b)

〉 + λε

ε
+ 1 − dist(x, T )

ε

= 1

ε

(
min
a∈A

max
b∈B

〈
nT (x0), f (x0, a, b)

〉 − dist(x, T )
)

+ λ + 1.

Due to Condition C.4, continuity of the function f , continuity of the vector nT (x) along
the boundary of the set T (by the reason of continuous differentiability of the boundary of the
set T ), and continuity of the scalar product on all arguments, one can choose such a number
η < 0 that for every point x0 ∈ ∂T the following inequality is true:

min
a∈A

max
b∈B

〈
nT (x0), f (x0, a, b)

〉 ≤ η < 0.

Then, on the basis of the number η, one can take such a number ε that

1

ε

(
min
a∈A

max
b∈B

〈
nT (x0), f (x0, a, b)

〉 − dist(x, T )
)

+ λ + 1 ≤ 0,

and fulfillment of this inequality implies fulfillment of the desired one.

(iii) Let x ∈ ∂Tε. One has ū(x) = 1. The point x belongs to the smooth line ∂Tε, where
two smooth branches of the function ū(·) join. Therefore, there are two partial limits of
∇ū(y) as y → x : the zero vector (if y ∈ Gε) and some vector κ(x) (if y ∈ Tε). Because
the function ū(·) has two smooth branches at the point x , one has that D−ū(x) is the
convex hull of the set of these two partial limits of ∇ū(·) at the point x : D−ū(x) =
co

{
κ(x), 0

} = {
γ κ(x) : γ ∈ [0, 1]}. Then,

H(x, s) − u(x) = min
a∈A

max
b∈B

〈
γ κ(x), f (x, a, b)

〉 + 1 − 1

= 1

ε
γ min

a∈A
max
b∈B

〈
nT (x0), f (x, a, b)

〉
.

In the same way as in the previous case under Condition C.4 of the admissibility ∂T , we
reach the relation

H(x, s) − u(x) ≤ γ
(1

ε
min
a∈A

max
b∈B

〈
nT (x0), f (x0, a, b)

〉 + λ
)
,

the right-hand side of which can be made less than zero for all γ ∈ [0, 1] with the help of
choosing an appropriate number ε.
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Thus, the inequality fromDefinition 3 is proved for all points from the set G; therefore, the
function ū is a supersolution of equation (13). And since the function ū satisfies the boundary
condition and is continuous at ∂G, it is a supersolution of problem (13), (14) in the sense of
Definition 4. ��
Therefore, if ∂T is an admissible zone (Condition C.4 holds), then problem (13), (14) has a
supersolution in the sense ofDefinition 7 andTheorem4holds. That is, under this assumption,
problem (13), (14) has a minimax solution.

As a result, it can be said that problem (13), (14) has a minimax solution if at least one
of Conditions C.4 and C.5 holds. Note that the accomplishment of Condition C.5 results in
the continuity of the value function nearby ∂F and Condition C.4 provides continuity of the
value function near ∂T . If both conditions hold (as it will be required below in Sects. 5.1
and 5.2), then the value function is continuous on the set G. Of special interest is a proof of
existence of a minimax solution of problem (13), (14) under some weaker assumptions.

5 Coincidence of Value Function andMinimax Solution

In book [16], the coincidence of the value function of a classic time-optimal problem and the
minimax solution of a boundary value problem of the corresponding HJE is proved in the
following way. At first, one proves that for any constant greater than the magnitude of the
minimax solution (recomputed by the inverse Kruzhkov’s transform), the guaranteed result
of the first player can be done less than this constant by choice of the strategy A of the
first player and the time partition Δ of the discrete control scheme; it is Theorem 19.6 in
Subsection 19.6 of book [16]. Further, it is proved that for any constant less than themagnitude
of the minimax solution (recomputed by the inverse Kruzhkov’s transform), the guaranteed
result of the second player can be done greater than this constant by choice of the strategy B
of the second player and time partition Δ of the discrete control scheme; it is Theorem 19.8
in Subsection 19.8 of book [16]. Finally, it is concluded that the guaranteed results converge
to the magnitude of the minimax solution. This together with their convergence to the value
function gives the coincidence.

Theorems 19.6 and 19.8 are not absolutely symmetric. Whereas Theorem 19.6 uses the
notion of a minimax solution, a subsolution is used in Theorem 19.8. This dissymmetry is
because of different aims of the players. So, in the classic situation, whereas the aim of the
first player is to lead the trajectory of the system to the target set, the aim of the second player
is to avoid an ε-neighborhood of this set.

Now, let us formulate and prove analogous theorems for the time-optimal problem with
lifeline. It should be noted that in Theorem 6 a supersolution is used instead of minimax
solution, because the first player tries not only to lead the system to the target T , but also to
avoid an ε-neighborhood of the set F .

Firstly, we prove a theorem on the estimate of guaranteed result of the second player for
a time-optimal problem with lifeline.

5.1 Estimate of Guaranteed Result of the Second Player

Let u : cl G �→ [0, 1] be a minimax solution (in sense of Definition 6) of problem (13), (14),
and u� be a subsolution (in sense of Definition 5) of this problem.We introduce the following
transform of the function u�:



764 Dynamic Games and Applications (2019) 9:751–770

uα
� (x) := max

y∈clG
{
u�(y) − wα(x, y)

}
,

where

wα(x, y) :=
(
α2/ν + ‖x − y‖2)ν

α
,

ν := (2 + 2λ)−1, 0 < α < min
{
1/3, [λ(1 + λ)]−1}, (16)

and λ is the coefficient from Lipschitz condition (3).
We choose

yα(x) ∈ Arg max
y∈clG

[
u�(y) − wα(x, y)

]
.

We define the feedback strategy Bα : cl G �→ B of the second player by means of the
relation

Bα(x) = b0
(
x, sα(x)

)
, (17)

where b0 is an extremal pre-strategy defined by the equality

b0(x, s) ∈ Argmax
b∈B

[
min
a∈A

〈
s, f (x, a, b)

〉]
,

and the vector sα(x) is given by the formula

sα(x) := −(
Dxwα

)(
x, yα(x)

) = (
Dywα

)(
x, yα(x)

)
.

Theorem 5 Let Conditions C.1–C.3 and C.5 hold; this guarantees existence and uniqueness
of the minimax solution u(·) : cl G �→ [0, 1] of problem (13), (14). Let x0 be a point in the
set G such that u(x0) < 1, and let θ be a positive number satisfying the inequality

θ < − ln
(
1 − u(x0)

)
.

Then, there exists a subsolution u� of this problem satisfying the inequality

θ < ω� := − ln
(
1 − u�(x0)

)
, (18)

and such numbers ε > 0, α > 0 that the estimate

T ε
2 (x0,Bα) ≥ θ (19)

holds. Here, Bα is a feedback strategy of the second player defined by relation (17) and the
variable T ε

2 (x0,Bα) is introduced by equality (8).

Proof By Proposition 1, we pick out a subsolution u� continuous on the boundary of G in
such a way. The minimax solution exists because of the satisfaction of Condition C.5, which
results in the existence of the sequence of subsolutions, which are continuous on the boundary
of the set G and converge pointwisely to this minimax solution. Among the elements of the
sequence, one can choose a subsolution so that inequality (18) holds.

We choose some numbers ε > 0 and α ∈ (0, ε/3]. Also, we choose a sequence of
points x̄n → x0 and a sequence of partitions {Δn} of the positive time semiaxis such that
δn = diamΔn → 0. By the sequence of partitions {Δn}, we construct a sequence of sets of
constructive motions X(x̄n,Bα,Δn) =: Xα

n .
In a time-optimal problemwith lifeline, three cases for amotion are possible:The trajectory

reaches the setT not hitting the setF , the trajectory stays in the setG forever, and the trajectory
reaches the set F not touching the set T . Thus, the proof is breaking apart into the following
cases:
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(I) There exist ε̄ > 0, ᾱ ∈ (0, ε̄/3] such that for all sequences
{
xn(·) ∈ X

α
n

}
, we have

that for all t ≤ θ the inequality dist
(
xn(t), T

) ≥ 3ᾱ holds. Herewith, two cases are
possible:

(I.1) For every n, there exists a trajectory xn(·) ∈ X
α
n , for which there exists an instant

tn ∈ Δn such that tn < θ and dist(xn(tn),F) ≤ 3ᾱ.
(I.2) Alternatively, for all n and for every trajectory xn(·) ∈ X

α
n , the opposite inequality

dist(xn(t),F) > 3ᾱ holds for all t ∈ Δn satisfying the restriction t < θ .
(II) Conversely, let for all ε > 0 and α ∈ (0, ε/3] there exist a sequence {

xn(·) ∈ X
α
n

}
and

a collection of instants t̄n , t̄n < θ , which satisfy the inequality dist
(
xn(t̄n), T

)
< 3α.

In case (I), estimate (19) is obvious. Indeed, in situation (I.1), there exists a strategy of
the second player, which leads every constructive motion of the system to the set F up to
the instant θ , so this strategy leads every constructive motion from the set X(x0,Bᾱ) to the
set F up to the instant θ . Thus, the guaranteed result of the second player is equal to +∞,
which is greater than θ . In situation (I.2), there exists a second player’s strategy, which repels
any stepwise motion of the system from some neighborhood of the terminal set up to the
instant θ , so the second player can also keep all constructive motions away from the terminal
set until the same instant, that is, ∀ n ∈ N τε̄

(
xn(·)

) ≥ θ and so, T ε̄
2 (x0,Bᾱ) ≥ θ .

Now, let us show that case (II) gives a contradiction.
We take an arbitrary partitionΔ = {ti } of the time axis. We can prove a relation on change

of the function uα
� along the motion from the set Xα

n analogous to that from the proof of
Theorem 19.6 [16, §19.6, pp. 248–250]:

uα
�

(
x(τ )

) ≥ 1 − [
1 − uα

� (xti )
]
eτ−ti − (τ − ti )e

τ−ti h(δ), (20)

where τ ∈ [ti , ti+1] ∩ [0, θ0]. Here, δ is the diameter of the partition Δ, and h(δ) → 0
as δ → 0. The instant θ0 = tk+1 is such that tk , tk+1 < θ , dist

(
x(tk), T

)
> 3α, and

dist
(
x(tk+1), T

) ≤ 3α. Summing (20) over all segments [ti , ti+1], we get
uα

�

(
x(θ0)

) ≥ 1 − [
1 − uα

� (x0)
]
eθ0 − θ0e

θ0h(δ)

≥ 1 − eθ0−ω� − eθ0α − θ0e
θ0h(δ). (21)

We take arbitrary sequences {εn} → 0 and
{
αn : αn ∈ (0, εn/3]

}
. By them, we con-

struct a functional sequence {xn(·) : xn(·) ∈ X
αn
n } and a sequence of instants

{
t̄n ∈ Δn :

dist
(
x(t̄n), T

)
< 3αn

}
. On the basis of the numeric sequences {αn} and {t̄n} and the func-

tional sequences
{
uαn

� (·)} and
{
xn(·)

}
, we get the following numeric sequence:

{
uαn

�

(
xn(t̄n)

)}
, where uαn

� (x) := max
y∈clG

{
u�(y) − wαn (x, y)

}
. (22)

In the samemanner as in the reasoning in Subsection 19.5 of book [16, §19.5, p. 246], one can
show that the maximum in (22) is achieved in such a point yαn (x) that

∥∥yαn (x) − x
∥∥ ≤ 2αn .

Further, the parentheses of yαn with x inside will be omitted. It is obvious that

uαn
� (x) ≥ u�(x) − wαn (x, x) ≥ −αn .

Then, wαn (x, yαn ) = u�(yαn ) − uαn
� (x) ≤ 1 + αn . Hence,

[
α
2/ν
n + ∥∥x − yαn (x)

∥∥2
]ν ≤ (1 + αn)αn,

∥∥x − yαn (x)
∥∥2 ≤ [

(1 + αn)αn
]1/ν − α

2/ν
n ≤ [

(1 + αn)αn
]1/ν ≤ 2α2

n .
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Therefore, yαn (x) ∈ O2αn (x). Here and below, the symbol Oρ(x) stands for an open ball
with the center at the point x and radius ρ. From this, it follows that

uαn
� (x) := max

y∈O2αn (x)

{
u�(y) − wαn (x, y)

}
.

By the choice of the instants t̄n , they satisfy inequality (21) with substitution of θ0 with
t̄n :

uαn
�

(
xn(t̄n)

) ≥ 1 − [
1 − uαn

� (x0)
]
et̄n − t̄ne

t̄n h(δn)

≥ 1 − et̄n−ω� − αne
t̄n − t̄ne

t̄n h(δn). (23)

The sequence {t̄n} is bounded, and consequently, one can select a convergent subse-
quence {t̄nk } → t̄ . In order not to overcharge the proof with double indexing, we assume that
the sequence {t̄n} itself converges. Since the inequality t̄n < θ holds for all n, then t̄ ≤ θ .

Now, let us consider the sequence
{
xn(·)

}
in the interval [0, t̄]. Generally speaking, a

function xn(·) can be defined in a smaller interval (if t̄n < t̄), but it can be expanded con-
tinuously in a “good” manner to the entire interval [0, t̄], for example, xn(t) = xn(t̄n),
t ∈ (t̄n, t̄ ]. The elements of the sequence are solutions of the differential inclusion, so{
xn(·)

}
is a uniformly bounded and equicontinuous sequence in the interval [0, t̄ ] (after a

“good” expansion). Consequently, one can apply the Arzela–Ascoli theorem and get a uni-
formly convergent subsequence; let the very sequence

{
xn(·)

}
be convergent. We denote its

limit by x̄(·).
By reason of the uniform convergence of the xn(·) ⇒ x̄(·), we obtain that the limit x̄(·)

is continuous and, thereby, xn(t̄n) → x̄(t̄) as n → ∞. Since dist
(
xn(t̄n), T

)
< 3αn and

αn → 0, then x̄(t̄) ∈ ∂T and u�

(
x̄(t̄)

) = 0 by the definition of a subsolution (it satisfies the
boundary condition at ∂T ).

Now, we show that
{
uαn

�

(
xn(t̄n)

)} → u�

(
x̄(t̄)

)
.

∣∣∣uαn
�

(
xn(t̄n)

) − u�

(
x̄(t̄)

)∣∣∣

=
∣∣∣∣ max
y∈O2αn

(
xn(t̄n)

)
{
u�(y) − w

(
xn(t̄n), y

)} − u�

(
x̄(t̄)

)
∣∣∣∣

=
∣∣∣∣u�

(
yαn

(
xn(t̄n)

)) − w
(
xn(t̄n), yαn

(
xn(t̄n)

)) − u�

(
x̄(t̄)

)
∣∣∣∣

≤
∣∣∣∣u�

(
yαn

(
xn(t̄n)

)) − u�

(
x̄(t̄)

)
∣∣∣∣ +

∣∣∣∣w
(
xn(t̄n), yαn

(
xn(t̄n)

))
∣∣∣∣. (24)

Let us consider the first and second terms of the last line of (24) separately. Since we
have that yαn

(
xn(t̄n)

) ∈ O2αn

(
xn(t̄n)

)
, the sequences xn(t̄n) → x̄(t̄) and αn → 0, then

yαn
(
xn(t̄n)

) → x̄(t̄). And since x̄(t̄) ∈ ∂T , and the function u�(·) is continuous on the bound-
ary T as a subsolution, then the numeric sequence u�

(
yαn

(
xn(t̄n)

))
converges to u�

(
x̄(t̄)

)

and the first term vanishes as n → ∞.
Now, turn to the second term. Since inequalities

dist
(
xn(t̄n), T

) ≤ 3αn and
∥∥xn(t̄n) − yαn

(
xn(t̄n)

)∥∥ ≤ 2αn

hold, then dist
(
yαn

(
xn(t̄n)

)
, T

) ≤ 5αn . Let

Ψαn := max
z∈cl(T5αn∩G)

u�(z) =: u�(zαn ). (25)
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In relation (25), themaximum is achieved, because the function u�(·) is upper semicontinuous
and the maximum is searched over a compact set. We have a bounded sequence {zαn }, where
zαn is defined in (25), from which one can select a subsequence convergent, obviously, to a
point at the boundary of the set T as n → ∞. Let the very sequence {zαn } be convergent.
Due to continuity of the function u�(·) on the boundary of the set T , we obtain that Ψαn =
u�(zαn ) → 0.

Then,

0 ≤ wαn

(
xn(t̄n), yαn

(
xn(t̄n)

))

= u�

(
yαn

(
xn(t̄n)

)) − uαn
�

(
xn(t̄n)

) ≤ Ψαn + αn → 0.

Therefore, both summands in the last line of expression (24) tend to zero as n tends to
infinity, so the left-hand side also vanishes. Hence, one gets that uαn

�

(
xn(t̄n)

) → u�

(
x̄(t̄)

)
.

Taking this into account, in (23), we proceed to the limit as n → ∞ (then αn → 0 and
δn → 0) and obtain

0 = u�

(
x̄(t̄)

) ≥ 1 − et̄−ω� > 0,

which is a contradiction. As a result, case (II) is impossible. The theorem is proved. ��

5.2 Estimate of Guaranteed Result of the First Player

Now, let us formulate and prove a theorem on the estimate of the guaranteed result of the
first player for time-optimal problem with lifeline.

Let u� be a supersolution of problem (13), (14). The following transformation of the
function u� is suggested:

u�
α(x) := min

y∈clG
{
u(y) + wα(x, y)

}
.

Here, wα(x, y) is defined by equality (16).
We define a feedback strategy Aα : cl G �→ A of the first player with the equality

Aα(x) = a0
(
x, sα(x)

)
. (26)

Here, the function a0 is the extremal pre-strategy identified with the equality

a0(x, s) ∈ Argmin
a∈A

[
max
b∈B

〈
s, f (x, a, b)

〉]
,

and the vector sα(x) is given by the relation

sα(x) := (
Dxwα

)(
x, yα(x)

) = −(
Dywα

)(
x, yα(x)

)
,

where

yα(x) ∈ Arg min
y∈clG

[
u(y) + wα(x, y)

]
.

(The indices α are made upper in order to differ from those in definition (17) of the second
player’s strategy, except for the function wα , which is the same for both situations.)

Theorem 6 Let Conditions C.1–C.3, and C.4 hold; this guarantees existence and uniqueness
of the minimax solution u(·) : cl G �→ R

n of problem (13), (14). Let x0 be a point of the set G
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satisfying the relation u(x0) < 1. Let θ be an arbitrary number such that θ > − ln(1−u(x0)).
Then, there exists a supersolution u� of this problem satisfying the relation

θ > w� := − ln(1 − u�(x0)), (27)

and numbers ε > 0 and α > 0, which meet the estimation

T ε
1 (x0,Aα) ≤ θ.

Here,Aα is a feedback strategy of the first player defined by (26), and the variable T ε
1 (x0,Aα)

is introduced by equality (7).

Proof By Proposition 2, we pick out a supersolution u� continuous on the boundary G in such
away. Theminimax solution exists because of the satisfaction of ConditionC.4, which results
in the existence of the sequence of supersolutions, which are continuous on the boundary of
the set G and converge to this minimax solution. Among the elements of the sequence, one
can choose a supersolution so that inequality (27) holds.

We choose some ε > 0 and α ∈ (0, ε/3]. Also, we choose a sequence of points x̄n → x0
and a sequence of partitions {Δn} of the positive time semiaxis such that δn = diamΔn → 0.
By these sequences, we obtain a sequence of a sets of constructivemotionsX(x̄n,Aα,Δn) =:
X

α
n .
Let us consider the following cases:

(I) There exist ε̄ > 0, ᾱ ∈ (0, ε̄/3] such that for all sequences
{
xn(·) ∈ X

α
n

}
, we obtain

that for all t ≤ θ the inequality dist
(
xn(t),F

) ≥ 3ᾱ holds. Herewith, two cases are
possible:

(I.1) For every n, there exists a trajectory xn(·) ∈ X
α
n , for which there exists an instant

tn ∈ Δn such that tn < θ and dist(xn(tn), T ) ≤ 3ᾱ.
(I.2) Vice versa, for all n and for every trajectory xn(·) ∈ X

α
n , the opposite inequality

dist(xn(t), T ) > 3ᾱ holds for all t ∈ Δn satisfying the restriction t < θ .
(II) Conversely, let for all ε > 0 and α ∈ (0, ε/3] there exist a sequence {

xn(·) ∈ X
α
n

}
and

a collection of instants t̄n , t̄n < θ , which satisfy the inequality dist
(
xn(t̄n),F

)
< 3α.

Cases (I.1) and (I.2) are considered similarly to cases (i) and (ii) from the proof of Theorem
19.6 of book [16, §19.6, p. 247]; this proof uses the denotations ᾱ and ε̄, which are not
mentioned further in this text. Let us consider case (II).

Let us recall that

u�
α(x) = min

y∈clG
{
u�(y) + w(x, y)

}
,

for all τ ∈ [ti , ti+1] ∩ [0, θ0], it is true that
u�

α

(
x(τ )

) ≤ 1 −
[
1 − u�

α

(
x(ti )

)]
eτ−ti + (τ − ti )e

τ−ti h(δ),

(it is proved in [16, §19.6, p. 247–249]), and u�
α(x0) ≤ u�(x0) + α = 1 − e−ω + α.

The instant θ0 = tk+1 is such that tk , tk+1 < θ , dist(x(tk),F) > 3α, and
dist(x(tk+1),F) ≤ 3α. From these recurrent estimates, one can obtain that

u�
α(x(θ0)) ≤ 1 − [1 − u�

α(x0)]eθ0 + θ0e
θ0h(δ) ≤ 1 − eθ0−ω� + eθ0α + eθ0θ0h(δ). (28)

Similarly to the proof of Theorem 5, we construct convergent sequences

{εn} → 0,
{
αn : αn ∈ (0, εn/3]

} → 0,

{xn(·) : xn(·) ∈ X
αn
n } ⇒ x̄(·),

{
t̄n : dist (x(t̄n),F

)
< 3αn

} → t̄,
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and also x̄(t̄) ∈ ∂F . By the constructed sequences, we get
{
u�

αn

(
xn(t̄n)

)}
, where u�

αn
(x) := min

y∈clG
{
u�(y) + wαn (x, y)

}
.

The proof of the convergence of
{
u�

αn

(
xn(t̄n)

)} → u�
αn (x̄(t̄)) entirely repeats the corre-

sponding proof for Theorem 5.
In (28), by choice of the instants tn , one can substitute θ0 with tn . We obtain

1 = u�
(
x̄(t̄)

) ≤ 1 − et̄−ω�

< 1

and come to a contradiction. The theorem is proved. ��
Thus, it has been justified that the guaranteed result of the first player of problem (1),

(10) can be made arbitrary close from above to the minimax solution of problem (13), (14),
and the guaranteed result of the second player can be made arbitrary close from below to
the minimax solution. Consequently, the guaranteed results coincide with each other and the
minimax solution. This results in coincidence of theminimax solutionwith the value function
of game (1), (10).

6 Comments on Classic Time-Optimal Games

As it was said above, in book [16], the proof of Theorem 19.8, which compares the guaranteed
result of the second player with the minimax solution of HJE, is omitted. The author says that
it is similar to the proof of Theorem 19.6, which compares the guaranteed result of the first
player with the minimax solution of HJE. In our attempts to prove Theorem 19.8 similarly
to the proof of Theorem 19.6, we come to a conclusion that only estimates on change of the
subsolution along the solution of the corresponding characteristic inclusion are analogue;
however, a consideration itself is based on additional information on continuity of chosen
subsolution on the boundary of the terminal set.

The proof of Theorem 5 can be used for constructing the proof of Theorem 19.8. The
proof can be broken apart in two cases: if there exists a second player’s strategy, which up to
the instant θ repels the motion of the system from some neighborhood of the terminal set, or
if there is no such a strategy. The first case is obvious, and the second is proved in the same
way as case (II) in Theorem 5.

It is worthwhile to say that, in general case, Theorem 19.8 cannot be obtained as a con-
sequence of Theorem 5 when G → R

n because of the strong assumptions on the boundary
∂G of the set G (smoothness and capability of the second player to push the system through
the boundary ∂F). However, in some particular situations, if one successfully constructs a
sequence of growing sets G satisfying the assumptions, then Theorem 19.8 can be proved via
Theorem 5.

7 Conclusion

This paper justifies existence of the value function of time-optimal problems with lifeline.
Existence of a minimax solution of the boundary value problem corresponding to a time-
optimal differential game with lifeline is proved under sufficiently strong assumptions about
the boundary of the set,where the game takes place.Under the same assumptions, coincidence
of theminimax solutionwith the value function of a time-optimal gamewith lifeline is shown.
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Assumptions made in the paper are that the boundary of the terminal set and the lifeline
are smooth manifolds. Moreover, it is assumed that the boundary of the terminal set is an
admissible zone for the first player (that is, if the system is at the boundary of the terminal
set, then the first player guarantees leading the trajectory of the system inside the terminal
set), and the lifeline is an admissible zone for the second player (that is, if the system is at
the lifeline, then the second player guarantees leading the trajectory of the system outside
the set where the game takes place). These assumptions together guarantee continuity of the
value function. It is planned to weaken the assumptions, in terms of which the theorems are
proved, and to find a connection between the value function of the classical time-optimal
problem with the value function of the time-optimal problem with the lifeline.
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